
International Journal of Intelligent Information Systems

2024, Vol. 13, No. 4, pp. 59-77

https://doi.org/10.11648/j.ijiis.20241304.11

*Corresponding author: ,

Received: 1 July 2024; Accepted: 24 July 2024; Published: 15 August 2024

Copyright: © The Author(s), 2024. Published by Science Publishing Group. This is an Open Access article, distributed

under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0/), which

permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

Research Article

Optimizing Food101 Classification with Transfer Learning:

A Fine-Tuning Approach Using EfficientNetB0

Adebayo Rotimi Philip
*

Department of Computer Science, University of Lago, Lagos, Nigeria

Abstract

Much research has been done on the classification of the food101 dataset, but much of this research which achieved an accuracy

score of more than 90% explores heavyweight architecture such as EfficientNetB7, Visual Geometry Group19, ResNet-200,

Inception v4, DenseNet-201, ResNeXt-101, MobileNet v3 and many more. This study explores the classification of the Food101

dataset using the EfficientNetB0 architecture, a lightweight architecture. Compared to other popular CNN architecture,

EfficientNetB0 has relatively small parameters, which makes it computationally efficient and suitable for deployment on

resource-constraint environments. The research aims to balance model accuracy and computational efficiency, addressing the

need for resource-constrained environments. Five experiments were conducted while varying the number of fine-tuned layers.

Results demonstrate that the fine-tuned EfficientNetB0 model achieves an accuracy score of accuracy score of 97.54%,

Top_k_categorical accuracy of 99.89%, precision of 98.21%, and recall of 97.02% in just 5 epochs. This research will

significantly contribute to the field of transfer learning by developing specialized models that excel in target tasks. Besides, it will

advance dietary monitoring, food logging, and health-related technologies, enabling more accessible and practical solutions for

consumers. However, the optimal number of layers to fine-tune for achieving perfect accuracy with EfficientNetB0 remains

uncertain. It often involves trial and error to determine the best configuration for optimal results, presenting an opportunity for

future research.

Keywords

Transfer Learning, EfficientNets, Lightweight Architecture, Convolutional Neural Network, Fine-Tuning

1. Introduction

1.1. Background

Machine learning has experienced advancement in recent

years, with the emergence of Artificial Neural Network (ANN)

[1], a machine learning model inspired by the human brain,

consisting of interconnected nodes (neurons) that process and

transmit information to solve complex tasks. ANN networks

have been used to solve problems in medicine, industrials, and

even in services [2]. One of the most impressive forms of

ANN architecture is that of the Convolutional Neural Net-

work (CNN). The CNN also called computer vision, is a type

of neural network designed for images and video analysis. It

makes use of convolutional and pooling layers to extract

features from images, together with dense layers (fully con-

nected layers) for classification and regression tasks [3]. CNN

is known and widely used for image recognition, object de-

http://www.sciencepg.com/journal/ijiis
http://www.sciencepg.com/journal/135/archive/1351304
http://www.sciencepg.com/
https://orcid.org/0009-0007-0452-7810
https://orcid.org/0009-0007-0452-7810
https://orcid.org/0009-0007-0452-7810
https://orcid.org/0009-0007-0452-7810

International Journal of Intelligent Information Systems http://www.sciencepg.com/journal/ijiis

60

tection, and image segmentation in AI.

One intriguing application of CNN is in the domain of food

recognition, which this research aims to explore. The Food

101 dataset is a well-known benchmark for this task, con-

taining 101 categories of food items with 1,000 images each,

resulting in a total of 101,000 images [4]. Each image in the

dataset is labeled, providing a rich resource for training and

evaluating image classification models [4]. The Food 101

dataset provides multifaceted challenges. Its substantial size

demands significant computational resources for processing

and training models. The high intra-class variability and in-

ter-class similarity add to the complexity, making it difficult

to accurately distinguish between similar food items. Besides,

the dataset includes images of varying quality, background,

light conditions, and noise levels, which can affect model

performance.

Several papers have been published using the food101 da-

taset, but the accuracy scores obtained have not been phe-

nomenal. For instance, Lukas, Matthieu, & Luc (2018) pub-

lished a paper in 2018 titled "Food-101 – Mining Discrimina-

tive Components with Random Forests" where they obtained

an accuracy score of 50.76% [5]. More so, Ren, Xinying, &

Khai (2021) worked on the Food 101 datasets classification

problem using several models: for LNAS-NET model, they

obtained an accuracy score of 49.3% after 100 epochs, Mo-

bileNET 49.1% accuracy score after 100 epochs, mo-

bileNETv2, 17.2% after 100 epochs, ShuffleNETv2 44.1%

after 100 epochs [6]. Those studies that achieved high accu-

racy rates above 90% relied on heavyweight architectures,

which are unsuitable for resource-constrained environments.

For instance, Mingxing (2019) obtained an accuracy score of

91.7% on CIFAR-100 dataset and 98.8% on flower datasets

using EfficientNetB7 [7]. Also, Rudraja (2022) obtained an

accuracy of 93.7% using ResNet-152, a heavyweight archi-

tecture with over 60 million parameters [8].

This research aims to propose transfer learning models such

as EfficientNetB0, which is partially fine-tuned (layers are

made trainable) to unravel the Food 101 problem with a better

accuracy score. Also, the research aims to balance model

accuracy and computational efficiency, addressing the need

for resource-constrained environments. This work will not

only demonstrate the power and flexibility of transfer learning

in tackling complex image classification problems but will

also provide valuable insights into the practical applications

of deep learning in food recognition. This endeavor will

bridge the gap between advanced machine learning tech-

niques and real-world applications, highlighting the trans-

formative potential of AI in everyday life.

1.2. Aims and Objective of the Research

This research aims to achieve the following

1) To achieve an optimal solution of food101 classification

with fine-tuned EfficientNetB0.

2) To show that lightweight convolutional neural network

can achieve outstanding results that is only possible with

heavyweight convolutional neural work

3) To balance model accuracy and computational efficiency,

addressing the need for resource-constrained environments.

2. Literature Review

Image classification is a key problem in computer vision,

with many recent improvements coming from object recog-

nition [6]. Traditional methods use local or dense grid de-

scriptors, pooled into vectors, and then classified with SVMs.

Recent methods emphasize nonlinear feature encodings, like

Fisher Vectors and spatial pooling [9]. Jorge et al. (2013) used

the Fisher Kernel framework to describe patches by how they

differ from a general Gaussian mixture model, resulting in

what we call Fisher Vectors (FV) [10]. They use this model to

describe an image for classification by extracting local

patches, encoding them into a high-dimensional vector, and

combining them into an overall image signature. Furthermore,

Lazebnik, Schmid & Ponce (2006) introduces a method for

recognizing scene categories using approximate global geo-

metric correspondence [11]. It works by dividing an image

into progressively smaller sub-regions and calculating histo-

grams of local features within each sub-region. Findings show

that the method surpasses current state-of-the-art results on

the Caltech-101 database and achieves high accuracy on a

large database of fifteen natural scene categories.

Taichi & Keiji (2009) introduced an automatic food image

recognition system that helps record daily meals. Using Mul-

tiple Kernel Learning (MKL), the system integrates image

features like color, texture, and SIFT [12]. A prototype was

tested on food images from phone cameras, achieving a 61.34%

classification rate for 50 food types. This is the first practical

food image classification system. Mei-Yun Chen, et al. (2009)

addressed the issues of feature descriptors in the food identi-

fication problem and introduced a preliminary approach for

quantity estimation using depth information [13]. It combines

SIFT, Local Binary Pattern, Gabor, and color features, train-

ing a multi-label SVM classifier for each. Using 50 food

categories with 100 images each, it achieves 68.3% accuracy

and over 80% accuracy in top-N candidates, making mobile

applications practical.

More so, Chen et al. (2009), presented the first visual dataset

of fast foods, including 4,545 still images, 606 stereo pairs, 303

360° videos for structure from motion, and 27 priva-

cy-preserving videos of volunteers eating [14]. The dataset,

aimed at dietary assessment research, features 101 foods from 11

fast food chains, with images captured in restaurants and a lab.

They benchmark it using color histograms and SIFT features

with a classifier. Lukas, Matthieu, & Luc (2018) researched the

classification of the Food 101 datasets using Random Forests to

identify key parts for all classes [5]. For efficiency, the re-

searchers focus on patches aligned with image super-pixels

called components. They tested the method on a dataset of 101

food categories with 101,000 images, achieving an average ac-

http://www.sciencepg.com/journal/ijiis

International Journal of Intelligent Information Systems http://www.sciencepg.com/journal/ijiis

61

curacy of 50.76%. The model outperforms other methods, except

CNNs, and surpasses SVM classification on Improved Fisher

Vectors and other part-mining algorithms.

Hassannejad et al (2016) examined the effectiveness of

deep convolutional neural networks (DCNNs) in identifying

foods from photographs. This study utilized various

DCNN-related techniques, including activation features ex-

tracted from pre-trained DCNNs and pre-training on

large-scale ImageNet data [15]. The model achieved a classi-

fication success rate, with accuracy rates of 78.77 percent and

67.57 percent for the UECFOOD100/256 dataset.

Kuang-Huei et al (2017) researched on the classification of

food-101N introduced in a CVPR 2018 paper CleanNet [16].

The food-101N has 310,009 images of food recipes and 101

food classes. They used transfer learning (ResNet-50) to ad-

dress label noise and keep verification labels for part of the

classes to only learn from human supervision. The result

shows a top-1 accuracy score of 81.44% compared to 81.67%

for the Food-101 dataset and reduced label noise detection

error rate on held-out classes where no human supervision is

available by 41.5% compared to current weakly supervised

methods.

Mingxing & Vuoc (2019) studied the model scaling of the

EfficientNet architecture and identified factors such as net-

work depth, width, and resolution that can lead to better per-

formance [17]. The EfficientNetB7 architecture achieves 84.3%

top-1 accuracy on ImageNet, 91.7% accuracy score on

CIFAR-100, and 98.8% on flower datasets. Pranjal & Seba

(2023) researched the performances of five popular very deep

pre-trained networks namely, Inception-v3 with 48 layers,

EfficientNet-B0 with 237 layers, Xception with 71 layers,

DenseNet-121 with 121 layers, and MobileNet with 53 layers,

for the classification of food images from the benchmark

Food-101 [18]. findings show that Xception gives the best

performance for classifying the 101 categories of food images,

with an accuracy of 84.54%, significantly outperforming the

other deep pre-trained networks.

Rudraja, V. (2022) worked on the classification of

food-101 datasets using several transfer learning models [19].

The researcher leverage on MobileNetV2, InceptionV3, Ef-

ficient Net, Resnet152, and Resnet50. They obtained an ac-

curacy score of 92.50% for MobileNetV2, 93.89% for Incep-

tionV3, 93.25% for EfficientNetB2, 93.79% for Resnet152,

and 92.46% for Resnet50 respectively. VijayaKumari, Pri-

yanka, and Vishwanath (2022) employed transfer learning

techniques to categorize various food products into their ap-

propriate categories [20]. Using Efficientnetb0, a transfer

learning technique, the developed model classified 101 dis-

tinct food kinds with an accuracy of 80%. When compared

with other food classification models, the EfficientNetB0

outperformed other models with the best accuracy.

EfficientNetB0 architecture has been integrated with other

architectures to improve performance. Jenan & Raidah (2023)

used the EfficientNetB0 with Principal Component Analysis

(PCA) and Random Forest (RF) to distinguish between the

fingerprints of male and female gender [21]. The SOCOFing

fingerprint dataset was fed into PCA to decrease the dimen-

sion of the feature images and RF classifier for fingerprint

classification. They obtained an accuracy of 99.91% [21].

Furthermore, Wijdan et al. (2021) proposed a hybrid model

using the FER2013 dataset for facial expression which inte-

grates two CNN models, one of which is EfficientNetB0. The

hybrid model obtained an accuracy score of 74.39%, outper-

forming other state-of-the-art classification methods [22]. The

research done by Neha et al. (2021) presents a hybrid encod-

er–a decoder-based model for segmenting healthy organs in

the GI tract in biomedical images of cancer patients [23].

EfficientNetB0 is used as a bottom-up encoder architecture

for downsampling to capture contextual information by ex-

tracting meaningful and discriminative features from input

images. The encoder EfficientNetB0 model achieves Dice

coefficient and Jaccard index values of 0.8975 and 0.8832,

respectively which outperform existing ecoder systems:

ResNet 50, MobileNet V2, and Timm Gernet [23].

The fine-tuning lightweight model has been proven to im-

prove accuracy. To justify this claim Paolo et al. (2024) per-

formed 3000 training processes focusing on 32 small to me-

dium-sized target datasets. They show that the top-tuning

approach provides comparable accuracy concerning fi-

ne-tuning, and the results suggest that top-tuning is an effec-

tive alternative to fine-tuning in small/medium datasets, es-

pecially useful when training time efficiency and computa-

tional resource saving are crucial [24]. Furthermore, Manoj &

Brajesh (2023) fine-tune six pre-trained CNN models: Effi-

cient-NetB0, EfficientNetB7, ResNet50, VGG19, Dense-

Net121, and DenseNet201 are fine-tuned for hyperspectral

image classification. The results show that fine-tuning im-

proves performance and saves computational resources.

Among the models, EfficientNetB0 performs better than

others with 90.79% accuracy for the Houston image [25].

Francis & Alon's (2021) work supports previous studies that

fine-tuning improves accuracy. They evaluated the efficiency

EfficientNetB0 model to diagnose malaria parasite infections

in blood smears. The fine-tuned model obtained the highest

accuracy of 94.70% after 50 epochs [26].

From the literature review, researchers achieved high ac-

curacy rates in classifying the Food101 dataset using the more

complex EfficientNetB7 architecture, which attained a 93.7%

accuracy rate. However, EfficientNetB7 is resource-intensive,

requiring significant computational power to process even a

few epochs. Other CNN models, such as MobileNetV2, In-

ceptionV3, EfficientNetB2, ResNet152, and ResNet50,

achieved up to 93.89% accuracy on the training dataset after

100 epochs. This research aims to surpass the highest accu-

racy model with a less resource-intensive architecture in

fewer than 10 epochs.

Summary of the literature review (table)

http://www.sciencepg.com/journal/ijiis

International Journal of Intelligent Information Systems http://www.sciencepg.com/journal/ijiis

62

Table 1. Shows the summary of the literature review.

Author(s) Problem definition Model used Results

Jorge et al. [27]
Used the Fisher Vectors Framework to

describe image classification
Fisher Vectors Framework

Successfully classify images into their

respective classes

Lazebnik, Schmid

& Ponce [11]

Introduced a method for recognizing scene

categories using approximate global geo-

metric correspondence.

Nill

the method surpasses current

state-of-the-art results on the Caltech-101

database

Taichi & Keiji [28]

Introduced an automatic food image

recognition system that helps record daily

meals.

Multiple Kernel Learning

(MKL)

Achieved a 61.34% classification rate for

50 food types test data

Mei-Yun Chen, et

al. [29]

Addressed the issues of feature descriptors

in the food identification problem

Multi-label SVM classifi-

er

Achieved 68.3% accuracy and 80% ac-

curacy in top-N candidates on 50 food

classes and 100 images in each class

Chen et al. [13]

Aimed at dietary assessment research.

They presented the first food101 datasets

with limited images

Color histograms and

SIFT features with a clas-

sifier

Nill

Lukas, Matthieu,

& Luc [30]

Researched the classification of the Food

101 datasets
Random Forests

Achieved an average accuracy of

50.76%. The model outperforms SVM

classification and a Fisher Vectors algo-

rithm

Hassannejad et al

[15]

Examined the effectiveness of deep con-

volutional neural networks (DCNNs) in

identifying foods from photographs.

DCNN-related techniques Achieved accuracy of 78.77 percent

Kuang-Huei et al

[31]

researched on the classification of

food-101N, a food dataset with 310,009

images

Used transfer learning

(ResNet-50) to address

label noise

Achieved top-1 accuracy score of 81.44%

compared to 81.67% for the Food-101

dataset

Mingxing & Vuoc

[7]

Studied the model scaling of the Effi-

cientNet architecture and identified factors

that can lead to better performance

EfficientNetB7 Network

Achieved 84.3% top-1 accuracy on

ImageNet, 91.7% accuracy score on

CIFAR-100, and 98.8% on flower da-

tasets

Pranjal & Seba

[29]

Researched the performances of five pop-

ular pre-trained networks for the classifi-

cation of food images from the benchmark

Food-101.

Inception-v3 with 48 lay-

ers, EfficientNet-B0 with

237 layers, Xception with

71 layers, DenseNet-121

with 121 layers, and Mo-

bileNet with 53 layers

Findings show that Xception gives the

best performance for classifying the 101

categories of food images, with an accu-

racy of 84.54%.

Rudraja, V. [18]

worked on the classification of food-101

datasets using several transfer learning

models.

MobileNetV2, Incep-

tionV3, Efficient Net,

Resnet152, and Resnet50.

Accuracy of 92.50% for MobileNetV2,

93.89% for InceptionV3, 93.25% for

EfficientNetB7, 93.79% for Resnet152,

and 92.46% for Resnet50.

VijayaKumari,

Priyanka, and

Vishwanat [19]

Employed transfer learning techniques to

categorize various food products into their

appropriate categories.

Efficientnetb0
Achieved an accuracy of 80%.

Author(s) Problem definition Model used Result

Jenan &

Raidah [21]

Distinguished between the fingerprints of male and

female gender using the SOCOFing fingerprint

dataset

the EfficientNetB0 with

Principal Component

Analysis (PCA) and

Random Forest (RF)

They obtained an accuracy of

99.91%

http://www.sciencepg.com/journal/ijiis

International Journal of Intelligent Information Systems http://www.sciencepg.com/journal/ijiis

63

Author(s) Problem definition Model used Result

Wijdan et al.

[23]

proposed a hybrid model using the FER2013 da-

taset for facial expression which integrates Effi-

cientNetB0 with another model

obtained an accuracy score of

74.39%,

Neha et al.

[24]

presents a hybrid encoder–a decoder-based model

for segmenting healthy organs in the GI tract in

biomedical images of cancer patients

EfficientNetB0 is used for

the encoder system

Dice coefficient of 0.8975 and Jac-

card index values 0.8832

Paolo et al.

[25]

performed 3000 training processes focusing on 32

small to medium-sized target dataset to show that the

top-tuning approach provides comparable accuracy.

Lightweight model

results suggest that top-tuning is an

effective alternative to fine-tuning in

small/medium datasets,

Manoj &

Brajesh [26]
hyperspectral image classification

Efficient-NetB0, Efficient-

NetB7, ResNet50, VGG19,

DenseNet121, and Dense-

Net201

The results show that fine-tuning

improves performance and saves

computational resources.

Francis &

Alon's [32]

evaluated the efficiency EfficientNetB0 model to

diagnose malaria parasite infections in blood

smears

EfficientNetB0

The fine-tuned model obtained the

highest accuracy of 94.70% after 50

epochs.

3. Transfer Learning

When building a machine learning model, one question to

often ask is if similar projects have been done in the past.

Instead of building a model from the start, we can benefit from

pre-trained models and fine-tune them to the problems. This is

called transfer learning. Transfer learning (TL) is a machine

learning (ML) technique where a model pre-trained on one

task is fine-tuned for a new, related task [33]. Based on the

fundamental principle of transferability of experiences, TL

emulates human capability to leverage previous knowledge in

new tasks [20]. Building a new model can be time-consuming

and can be an intensive process that requires a large amount of

data, computing power, and several iterations before it is

ready for production. For instance, a machine learning model

that is trained to identify the images of dogs can be fine-tuned

to identify the images of cats, using a smaller image size that

highlights the feature differences between dogs and cats.

Transfer learning is highly beneficial in creating machine

learning models. One of the benefits is that it enhances effi-

ciency [33]. Building machine learning models requires a

large volume of data, is time-consuming, and computationally

expensive. However, transfer learning takes care of these

deficiencies as it can work with a small amount of data.

Transfer learning models often demonstrate greater robust-

ness in diverse and challenging environments. They can better

handle real-world variability and noise, having been exposed

to a wide range of scenarios in their initial training, thus they

give better results [19].

3.1. The Architecture of the Model

While we can build our own CNN network to achieve high

accuracy on the Food101 dataset, we can leverage predefined

models already built by others. The EfficientNet family is the

ideal transfer learning model for this task, offering superior

performance for image classification due to its optimized

scaling of depth, width, and resolution. EfficientNet's com-

pound scaling method can achieve state-of-the-art results with

fewer parameters and lower computational costs. [34].

3.2. EfficientNetB0

EfficientNet is a type of Convolutional Neural Network

(CNN) that improves accuracy by evenly increasing the

network's depth, width, and resolution [8]. EfficientNetB0 is

the baseline model in the EfficientNet family, from which

other complex EfficientNet models (B1 – B7) are developed.

Introduced by Google in 2019, EfficientNet can achieve high

performance with fewer parameters and FLOPs (floating

point operations) compared to other CNN models [9]. This

makes EfficientNetB models ideal for deployment in re-

source-constrained environments, offering a balance of speed

and accuracy for image classification tasks [9]. It is widely

used in various applications, from mobile devices to

large-scale cloud environments.

EfficientNet models perform more efficiently than most

existing CNN models trained on the ImageNet dataset. Figure

1 shows the efficiency of EfficientNetB0 – B7. Just like other

CNN models, increasing the complexity of EfficientNets lead

to better accuracy, though they require or demand more

computational resources.

http://www.sciencepg.com/journal/ijiis

International Journal of Intelligent Information Systems http://www.sciencepg.com/journal/ijiis

64

Figure 1. Shows the performance of the EfficientNets and other CNN transfer learning networks [9].

3.2.1. Characteristics of EfficientNets

EfficientNetB0 comprises 257 layers, whereas Efficient-

NetB7, the most advanced model in the EfficientNetB family,

contains 813 layers [9]. The EfficientNetB architecture is

generally divided into two major components: the stem layer

and the subsequent layers. Each model within the Efficient-

NetB series, from B0 to B7, consists of 7 blocks, with each

block containing multiple sub-block layers [35]. Efficient-

NetB0 features the fewest sub-block layers, and the number of

these layers increases progressively from B0 to B7, scaling up

in complexity and capability [36].

3.2.2. Architecture of EfficientNetB0

To understand the architecture of EfficientNetB0, we can

run this below code in the Google Colab or Jupyter Notebook.

import tensorflow as tf

base_model =

tf.keras.applications.efficientnet_v2.EfficientNetV2B0(includ

e_top=False)

Check layers in our base model

for layer_number, layer in enumerate(base_model.layers):

print(layer_number, layer.name)

The outputs of the codes are displayed below. Figure 2

shows the blocks (layers) of the EfficientNetB0. There are

237 layers, but Figure 2 only shows the first 21 layers. Ob-

serving figures 2 and 3, we can see that there are two

components in EfficientNetB0: the stem component and the

block component. The stem component is made up of the first

five layers: input layer, rescaling layer, normalization layer,

Convolutional layer (Conv2D), Batch Normalization layer

(stem_bn), and the activation layer (stem activation), while

the block component has seven blocks (1, 2, 3, 4, 5, 6, and 7

blocks) and each block has several sub-layers.

Figure 2. Shows the layers of the EfficientNetB0 architecture.

Running the code below gives us more detailed information

about the architecture of EfficientNetB0

base_model.summary()

http://www.sciencepg.com/journal/ijiis

International Journal of Intelligent Information Systems http://www.sciencepg.com/journal/ijiis

65

Figure 3. Shows the layers of the EfficientNetB0.

(i). Input Layer

The input layer is the first layer in the model architecture. It

is the layer where the image data is prepared for subsequent

layers. The input layer expects images of a specific size,

typically 224x224 pixels for EfficientNetB0 [37]. Other big-

ger models (B1 – B7) take a higher image resolution. For

instance, the image resolution for B0 model – B7 model are

given in table 2.

Table 2. Shows image resolution of EfficientNets.

Models Image Resolution

EfficientNetB0 224 x 224

EfficientNetB1 240 x 240

EfficientNetB2 260 x 260

EfficientNetB3 300 x 300

EfficientNetB4 380 x 380

EfficientNetB5 456 x 456

EfficientNetB6 528 x 528

EfficientNetB7 600 x 600

Datasets are stored in different shapes and forms, which

could be in a vector or matrix or a table. images and videos

with multiple colour channels are represented as (batch_size,

height, width, channels), where batch_size is the number of

images processed simultaneously, height and width are the

dimensions of the image, and the channels represent red,

green, and blue colours (RGB) from which all image colours

are made. For instance, let’s assume that the height of the

image in figure 4 is 512 pixels and the width is 320 pixels,

then the image is made up 163,840 pixels.

Figure 4. Shows an image representation in pixels [39].

http://www.sciencepg.com/journal/ijiis

International Journal of Intelligent Information Systems http://www.sciencepg.com/journal/ijiis

66

Each pixel is a combination of three colors (Red, Green,

and Blue) at varying intensities. The intensity value for these

colors is represented from 0 to 255, indicating how much of

the color is present in the pixel [38]. A pixel with a color

intensity value of (235, 10, 10) exhibits a high red color in-

tensity. Consequently, a white pixel is represented numeri-

cally as (255, 255, 255), indicating maximum intensity for red,

green, and blue, while a black pixel is represented as (0, 0, 0),

indicating the absence of color intensity in all three compo-

nents [38]. Figure 5 shows the colour intensities of the

three-color channels (Red, Green, and Blue).

Figure 5. Shows the channels (red, green, blue colors) in images [39].

The shape of an input image is crucial in Convolutional

Neural Networks (CNNs) as they are trained to process data in

specific formats. CNNs expect data to be represented in ap-

propriate shapes to function correctly [37]. A significant issue

in image processing for CNNs is the inconsistency in image

shapes across datasets [39]. For example, EfficientNetB0

requires images to be in the shape of 224x224x3 for pro-

cessing. However, the images in the Food101 dataset (the

dataset for this research) are typically 384x512x3, with some

even differing from this representation [5]. Due to these dis-

crepancies, it is necessary to resize the images to 224x224 for

compatibility with the EfficientNetB0 model [40].

Another concern is the datatype of the images. Machine

learning algorithms process numerical data, typically in in-

teger (int) or floating-point (float) formats [40]. However,

some images are stored in unit or object formats. These

datatypes need to be converted to numerical formats before

being fed into the algorithm.

(ii). Image Preprocessing

The second layer in the EfficientNet architecture is the

image rescaling. Image preprocessing, which can also be

termed image rescaling is processing or refining the image

input to a format that can be processed by the CNN to enhance

learning and improve performance [41]. Scaling input fea-

tures through normalization and standardization, generating

additional training samples via data augmentation, filtering

noise through noise reduction, and performing feature engi-

neering are essential steps that can significantly enhance a

neural network's performance [39].

Image resizing is a critical preprocessing step in machine

learning, especially in computer vision tasks. It involves ad-

justing the dimensions of an image to fit the input require-

ments of a model. Most convolutional neural networks (CNNs)

expect images to have uniform dimensions, making resizing

necessary to ensure consistency across the dataset. Resizing

images serves multiple purposes. It reduces computational

complexity, requires less memory and processing power, and

helps handle varying image resolutions [41].

However, resizing images must be done carefully to

maintain the aspect ratio and avoid distortion [38]. Distorting

an image can lead to the loss of critical features and can ad-

versely affect model performance. Techniques such as pad-

ding can be used to resize images without distortion. For

example, if an image is resized to a square shape, padding can

be added to maintain the original aspect ratio by adding bor-

ders to the image. Another consideration during resizing is the

interpolation method used. Different interpolation methods,

such as nearest-neighbor, bilinear, and bicubic, can impact the

quality of the resized image.

(iii). Normalization Layer

Normalization technique involves adjusting the range of

pixel values in an image to a standardized scale, typically

between 0 and 1 or -1 and 1. The primary rationale behind

normalization is to enhance the convergence speed and sta-

bility of training algorithms [41]. By scaling the pixel values,

normalization ensures that the numerical input to the neural

network is more uniform, which helps in mitigating issues

related to gradient vanishing or explosion during the training

phase [41]. This preprocessing step is especially critical when

using activation functions like sigmoid or hyperbolic tangent

(tanh), which are sensitive to the scale of input data.

The research done by Norhikmah, Afdhal & Rumini (2022)

demonstrated that normalization accelerates the training

process and improves the overall performance of the machine

learning models [41]. This improvement is attributed to the

reduction in numerical instability and the promotion of faster

gradient descent convergence. Furthermore, normalization

prevents the network from depending on the original range of

input data, thus enhancing the model's generalization capa-

bilities across different datasets [42]. Common normalization

techniques include min-max normalization, which scales the

pixel values to a specified range, and z-score normalization,

which adjusts the values based on the mean and standard

deviation of the dataset.

(iv). Batch Size

The batch size is the number of samples that will be pro-

cessed by a network at one time. Assuming we have 960

http://www.sciencepg.com/journal/ijiis

International Journal of Intelligent Information Systems http://www.sciencepg.com/journal/ijiis

67

images of food and the batch size is 32, it means that for one

complete epoch, 30 batches each of 32 images will be pro-

cessed by the network. Processing in batches enables the

resources available to process the batch samples one after the

other than processing the 960 images at once, which will

require more resources and could slow down the process. If

there are enough resources, the batch size can be larger as a

larger batch size completes each epoch within a shorter time

than a smaller batch size. The trade-off, however, is that even

if our machine can handle very large batches, the quality of

the model may degrade as we set our batch larger, thus

causing overfitting [43].

Figure 6. Shows batching processing techniques [44].

(v). Convolutional Layer

Figure 7 below shows the processes involved in the con-

volutional layer. The layer has the input image represented in

pixels, the filter (a square matrix also called a kernel), and the

activation map, which indicates the most relevant regions in

the input image for predictions, illustrating the learned fea-

tures.

Figure 7. Shows the convolutional layer processes [45].

A convolutional layer is an important layer in a Convolu-

tional Neural Network (CNN). it is made up of filters (kernels)

whose values are learned during training [44]. These filters

are usually smaller than the input image as shown in figure 7.

Each filter slides over the image and performs a dot product

between its values and the corresponding input values to

create an activation map.

How does it Work?

In simple terms, think of a filter as a small window that

scans the image and highlights patterns it recognizes. For

example, in Figure 7, the filter is multiplied (dot product) with

the blue matrix in the input image, and the result of the dot

product is inputted in the activation map. For instance,

7*1 + 2*0 + 3*-1 + 4*1 + 5*0 + 3*-1 + 3*1 + 3*1 + 2*-1 = 7 +

0 - 3 + 4 + 0 - 3 + 3 + 3 - 2 = 6

This process is repeated as the filter slides over the entire

image, producing a new matrix called the feature map (or

activation map).

The final output of a convolutional layer is a stack of these

activation maps, one for each filter. Each map can be thought

of as the output of a neuron that is connected to a small region

of the input image, the size of which matches the filter size.

All neurons in an activation map share the same parameters,

meaning they detect the same pattern but at different positions

in the image.

Hyperparameters in Convolutional Network

Hyperparameters are settings configured in CNN that guide

the way the convolutional process is done. In the convolu-

tional layer, three hyperparameters (padding, kernel size, and

stride) are of utmost significance.

Padding

During convolutional training, the kernel (filter matrix) can

extend beyond the activation map, thus padding converses the

data at the border of the activation map. This is necessary to

preserve the spatial size (shape of the activation map) [45].

Many padding techniques are available for use, but the most

commonly used is zero padding because of its performance,

simplicity, and efficiency. Padding techniques involve adding

zeros symmetrically around the edges of an input [45].

Kernel size

The kernel size refers to the dimension of the filter matrix.

The job of the kernel size is to extract information from the

image [39]. The kernel is multiplied with the image matrix to

form the activation map. The type of kernel size used In a

CNN network has a significant impact on the performance of

the classification task. A small kernel size can extract more

detailed information from an image than a large one. The 3x3

kernel in Figure 7 produces a 3x3 activation map, however, a

2x2 kernel size will produce a 4x4 activation map [32]. A

larger kernel size leads to a faster reduction in the layer di-

mension, leading to worse performance.

Stride

The stride determines how many pixels to the right should

the kernel shift over the image matrix to perform the second

dot product operation. Tiny VGG, an image classification

network, uses a stride of 1 for its convolutional layers,

meaning that the kernel moves 1 pixel to the right to perform

the next dot multiplication operation [43, 45]. After the com-

pletion to the right, the kernel moves 1 pixel downward to

cover other pixels in the image. The impact of the stride is

similar to that of the kernel size. A large stride (say 3 pixels)

reduces the features much more quickly, thus reducing per-

formance [45]. Conversely, a small stride (like 1 pixel) allows

http://www.sciencepg.com/journal/ijiis

International Journal of Intelligent Information Systems http://www.sciencepg.com/journal/ijiis

68

the kernel to extract more features from the image, thus

leading to better performance.

The convolutional layer of EfficientNetB0

Figure 8 shows the convolutional layer of the Efficient-

NetB0. The convolutional layer is the main process of a CNN

network. From Figure 8, the first convolutional layer is a

conv3x3 matrix (also called the conv2D in figure 3). The 3x3

represents the kernel size, while the ‘2D’ represents a

2-dimensional matrix.

Figure 8. Shows the convolutional layer of the EfficientNetB0 model [7, 47].

The convolutional layers in blocks 1 to 7 are similar. In

block 1, MBConv1, 3x3 refer to a specific type of convolu-

tional block called Mobile Inverted Residual Bottleneck

(MBConv) with a matrix (filter) of 3x3 and an expansion

factor of 1. MBConv was introduced by MobileNetV2 archi-

tecture and it is designed for computation and memory effi-

ciency [46]. It expands the number of channels (RGB colors)

using pointwise convolution, applies the depthwise separable

convolution, and then represents the results in a lower di-

mensional space [45]. The expansion factor indicates how

much the channel is expanded before depth-wise convolution

[47].

4. Metrics Used in the Experiment

Before discussing the results, we need to explain the met-

rics (accuracy, loss, Top_k_categorical_accuracy, precision,

and recall) used in these experiments. The diagram below

considers a confusion matrix.

Consider this confusion matrix above. The dark blue

boxes represent true positive and false positive respectively.

True positive means that the model predicted the exact as the

actual. The term ‘true’ means that the model correctly pre-

dicted the sample and ‘false’ means otherwise. Positive and

‘negatives’ refer to the samples in the data. In a case where

we have two samples (binary classification), the first sample

could be classified as positive and the second sample as

negative.

Figure 9. Shows a confusion matrix.

Accuracy

Accuracy is a metric that describes how a model performs

across all dataset. It is useful when all classes of a dataset are

of equal significance and it measures the overall correctness

of a model. It is calculated by the ratio of number of correct

predictions to the total number of predictions.

Accuracy =
𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+ 𝑇𝑟𝑢𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

http://www.sciencepg.com/journal/ijiis

International Journal of Intelligent Information Systems http://www.sciencepg.com/journal/ijiis

69

Precision

Precision, also known as the positive predictive value, is

the ratio of true positive predictions to the total predicted

positives. It measures the accuracy of positive predictions. It

focuses on the correctness of positive predictions.

Precision =
𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+ 𝐹𝑎𝑙𝑠𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

Recall

Recall, also known as sensitivity or true positive rate, is the

ratio of true positive predictions to the total actual positives. It

measures the ability of a model to identify all relevant instances.

Recall =
𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+ 𝐹𝑎𝑙𝑠𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

Top-k Categorical Accuracy

Top-k categorical accuracy measures the proportion of

predictions where the true label is among the top k predicted

labels. This is particularly useful for multiclass classification

where you want to know if the correct label is within the top k

predictions.

Top-k Categorical Accuracy =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝑡𝑜𝑝 𝑘

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

5. Research Methodology

The research methodology involves data collection, un-

derstanding the data, image preprocessing, building the base

model using 10% of the data, fine-tuning experiments, eval-

uating the model with validation and test data, and lastly

choosing the best model.

5.1. Data Collection

The Food-101 dataset is a large collection of food images

designed for the task of food classification. The Food-101

datasets were collected to help advance research in computer

vision and machine learning, particularly in the domain of

image recognition. Introduced by the ETH Zurich Computer

Vision Lab in 2014, the Food-101 dataset has become the

extremely popular benchmark for evaluating algorithms due

to its diversity and complexity.

Composition of Food-101 Dataset

The Food-101 dataset contains 101,000 images divided into

101 categories, with each category representing a different type

of food. Each category includes 1,000 images, offering substan-

tial data for training and evaluation. The dataset features a variety

of dishes, from common fast-food items like burgers and hot

dogs to more complex dishes like paella and sushi.

1) Images: 101,000 images (approximately) of food dishes,

divided into 101 classes (e.g., pizza, sushi, tacos, etc.).

2) Resolution: Images are resized to 512x384 pixels.

3) Format: JPEG format.

4) Classes: 101 classes, each representing a specific type of

food dish.

5) Each class of image has 1000 images

Figure 10. Shows part of the images of food101 dataset [15].

The Food101 dataset can be downloaded from Google

Storage or TensorFlow Datasets. During the download pro-

cess, the data is shuffled to reduce overfitting, preventing the

model from merely memorizing the training data and thereby

enhancing its generalization ability. Shuffling also improves

model robustness, enabling it to handle new and unseen data

more effectively, which helps prevent bias, enhance conver-

gence, and provide a better representation of the dataset. This

ensures that the CNN model is trained on a diverse and rep-

resentative set of images, ultimately leading to improved

performance and generalization.

5.2. Understanding the Data

After obtaining the data, it is compulsory to explore the

data before modelling. In the food101 datasets, we do the

following to get acquainted with the dataset.

1) We explore the class labels. The data has 101 food

classes. The first 10 food classes are

['apple_pie', 'baby_back_ribs', 'baklava', 'beef_carpaccio',

'beef_tartare', 'beet_salad', 'beignets', 'bibimbap',

'bread_pudding', 'breakfast_burrito']

http://www.sciencepg.com/journal/ijiis

International Journal of Intelligent Information Systems http://www.sciencepg.com/journal/ijiis

70

2) We can randomly select images of food in the dataset to

better understand the food classes.

3) We can check the tensor for each image. A tensor for

instance is represented as ([255, 192, 203]) for each

pixel. Each image in the food101 dataset has a resolution

of 224x224, totaling 50,176 pixels. Therefore, an image

in the food101 dataset has 50,176 tensors and each ten-

sor has three values indicating the intensities of RGB

colours. The intensity of each colour of red, green or

blue has values from 0 – 255.

4) We can check the shape and data type of the images. The

food101 input shape is [224x224x3] and the output shape is

a vector. The datatype is represented in unit 8. We have to

convert the datatype in int32 before processing.

5) We can check the labels of the dataset. Are they one-hot

encoded or label encoded?

6) We can check if the labels match-up with the class names

5.3. Image Preprocessing

We cannot use our raw data food101 this way. We need to

preprocess the data. Preprocessing in image classification

involves preparing raw image data for the classification al-

gorithm [36]. This includes steps like resizing images (see

3.2.2.2) to a uniform size, normalizing pixel values (see

3.2.2.3), batching (see 3.2.2.4), augmenting data through

transformations (e.g., rotations, flips), and removing noise.

Preprocessing enhances the quality of the input data, ensures

consistency, and often improves the performance and accu-

racy of the classification model [39].

For our food101 data, we convert the uint8 data type to float

32 datatypes. Besides, the food101 dataset comprises of dif-

ferent sized tensors (images), so the data need to be converted

into 255 by 255, first for consistency and besides, the Effi-

cientNetB0 can only process images in 255 by 255. Lastly, the

images need to be scaled. Scaling also call normalization is the

process of converting the pixel values into numbers between 0s

and 1s. This is done by dividing the pixels by 255. Efficient-

NetB1 for instance, takes images in size 260 by 260. In the case,

the image will be divided by 260 for scaling.

We need to process our images in batches. Batch pro-

cessing is the technique of dividing a large dataset into smaller,

manageable batches for processing. This method enhances

memory efficiency, accelerates computation, and optimizes

resource utilization [48], particularly in machine learning and

data processing tasks, enabling continuous and effective use

of hardware resources like CPUs and GPUs. In our experi-

ment, we batch the 101,000 images into batches of 32 images

and label pairs, thus enabling the images to fit into the GPU

memory.

5.4. Building the Base Model

To build the base model, we typical use TensorFlow, im-

porting the pre-trained EfficientNetB0 model from its re-

spective library. The pretrained model already trained on a

large dataset like ImageNet, is fine-tuned to enable the model

to generalize better

5.5. Fine-tuning Experiments

Fine-tuning is the process of unfreezing the EfficientNetB0

layers to optimize the model’s performance. Fine-tuning al-

lows the weight of the base model to adapt to the dataset.

enabling the model to leverage learned features while adapt-

ing to new data. The result is a powerful and efficient base

model suitable for various image classification applications.

We did the first experiment with 10% of the data and fine-tune

the top 5 layers for experiment 2. For experiment 3, we train

the EfficientNetB0 model on the entire dataset, after which we

fine-tuned the top 50 layers and top 100 layers for experiment

4 and 5 respectively.

5.6. Evaluation of the Models

We evaluate the performance of the experiments using the

accuracy score, loss function, recall, precision, and Top-k

Categorical Accuracy. See 4.0

6. Analysis of the Result

6.1. Experimental Results

To demonstrate the effectiveness of transfer learning with

EfficientNetB0, the research was conducted using various

quantities of data. We began by experimenting with 10% of

the training data and 101 food classes, equating to 7575 im-

ages with each class containing 75 images. Next, we per-

formed three experiments on the whole dataset (101,000 im-

ages), fine-tuning the layers to obtain the optimal accuracy.

Experiment 1: Feature extraction with 10% training dataset

In the feature extraction model, all layers are fixed except

for the input layer [49]. After five epochs, the model (10% of

the training data) achieved an accuracy of 0.6440 and a loss of

1.4493. The training process took 4 minutes and 32 seconds.

The validation accuracy and loss were 0.6572 and 1.7824

respectively. When evaluated on the test dataset, the model

achieved an accuracy of 0.5797. The figure 11 illustrates the

training and validation metrics over five epochs.

http://www.sciencepg.com/journal/ijiis

International Journal of Intelligent Information Systems http://www.sciencepg.com/journal/ijiis

71

Figure 11. Shows the accuracy and the loss function of experiment 1.

Experiment 1 shows moderate performance with relatively

low accuracy and high loss. Precision and recall are balanced,

but there's room for improvement. Figure 11 shows that the

validation dataset is overfitting. If the number of epochs is

increased, the accuracy will increase. The validation metrics

are consistent with the training metrics, but precision is ab-

normally high, likely due to calculation issues. The recall is

lower, indicating missed positive instances.

Experiment 2: Fine-tuning model 1

To improve the results in experiment 1, we fine-tune the

EfficientNetB0 architecture. Fine-tuning a model involves

taking a pre-trained EfficientNetB0 model and adjusting its

weights to better suit a specific dataset [37]. Initially, the

model, pre-trained on a large dataset like ImageNet, has

learned general features. Fine-tuning adapts these features to

the new dataset by adjusting the weights of the pre-trained

model to fit to the specific task [50]. This process involves

unfreezing the layers that capture more task-specific features

to enhance performance and accuracy for the target task.

To fine-tune, we unfreeze the last 10 base layers (… 233

block7a_project_conv True, 234 block7a_project_bn True,

235 top_conv True, 236 top_bn True, 237 of top_activation

True). After five epochs, the fine-tuned architecture achieved

an accuracy of 0.8733 and a loss of 0.5395. The validation

data achieved an accuracy score of 0.6618 and a loss of

1.2537. On evaluating with test date, we obtained a loss: of

1.2831 and - accuracy: of 0.6647. The figure below shows the

accuracy and loss for the training and validation dataset. Fi-

ne-tuning improves accuracy and reduces loss compared to

Experiment 1. Precision and recall also improve, indicating

better model performance. Validation accuracy is consistent

with training accuracy, showing good performance.

Epoch 5/5

237/237 [==============================] -

100s 420ms/step - loss: 0.5395 - accuracy: 0.8733 -

top_k_categorical_accuracy: 0.9809 - precision_3: 0.9637 -

recall_3: 0.7529 - val_loss: 1.2537 - val_accuracy: 0.6618 -

val_top_k_categorical_accuracy: 0.8893 - val_precision_3:

0.8085 - val_recall_3: 0.5707

Test data

loss: 1.2831 - accuracy: 0.6647 -

top_k_categorical_accuracy: 0.8886 - precision_1: 0.7865 -

recall_1: 0.5890. The figure 12 below shows the accuracy and

loss of experiment 2

Figure 12. Shows the accuracy and the loss function of experiment 2.

http://www.sciencepg.com/journal/ijiis

International Journal of Intelligent Information Systems http://www.sciencepg.com/journal/ijiis

72

Experiment 3: training the who dataset

In this experiment, we train the EfficientNetB0 feature ex-

traction model with the entire training dataset. After training

for 5 epochs, we obtain the result below:

Epoch 5/5

2368/2368

[==============================]271s 114ms/step

- loss: 1.0433 - accuracy: 0.7246 -

top_k_categorical_accuracy: 0.9136 - precision_1: 0.8851 -

recall_1: 0.6028 - val_loss: 0.9615 - val_accuracy: 0.7379 -

val_top_k_categorical_accuracy: 0.9245 - val_precision_1:

0.8764 - val_recall_1: 0.6361

For the test data, we obtain the result below

loss: 0.9615 - accuracy: 0.7379 -

top_k_categorical_accuracy: 0.9245 - precision_1: 0.8764 -

recall_1: 0.6361

Training the whole dataset increases accuracy and top-k

accuracy, but recall is lower, suggesting the model may miss

some positive instances. Slightly higher validation accuracy

compared to training, with good precision and improved re-

call over Experiment 1, indicating better generalization.

The two graphs below show the accuracy and loss result of

experiment 3

Figure 13. Shows the accuracy and loss function of experiment 3.

Experiment 4: Fine-tunning the model in experiment 3

In this experiment, we unfreeze the last 50 layers of our

base model and after training the model for 5 epochs, we

obtained the results below.

2368/2368 [==============================] -

229s 96ms/step - loss: 0.3746 - accuracy: 0.8925 -

top_k_categorical_accuracy: 0.9855 - precision_2: 0.9402 -

recall_2: 0.8460 - val_loss: 0.7817 - val_accuracy: 0.7966 -

val_top_k_categorical_accuracy: 0.9482 - val_precision_2:

0.8554 - val_recall_2: 0.7655

For the evaluation of the test data, we obtain

loss: 0.7817 - accuracy: 0.7966 -

top_k_categorical_accuracy: 0.9482 - precision_2: 0.8554 -

recall_2: 0.7655

The fine-tune EfficientNetB0 architecture takes 35 minutes

to train the whole food101 dataset. The diagram below gives

the result of this experiment. All hyperparameters are kept

constant. The model gave an accuracy score of 0.8467 and

loss function of 0.4567 after five epochs. However, the model

has an accuracy and loss of 0.7856 and 0.9035 on the valida-

tion data. Similar result was obtained when the model was

evaluated on the test data. Unfreezing 50 layers in experiment

3 significantly improves accuracy, precision, recall, and re-

duces loss, indicating a well-balanced and effective model.

Validation results are slightly lower than training, but still

strong, showing effective fine-tuning and good balance be-

tween precision and recall.

Figure 14. Shows the accuracy and loss function of experiment 4.

http://www.sciencepg.com/journal/ijiis

International Journal of Intelligent Information Systems http://www.sciencepg.com/journal/ijiis

73

Experiment 5

Since the results in experiment 4 are not excellent, we un-

freeze the first 100 layers of the EfficientNetB0 and train the

model to see if we will obtain better results. The results are

shown below.

Epoch 5/5

2368/2368 [==============================] -

278s 117ms/step - loss: 0.1003 - accuracy: 0.9754 -

top_k_categorical_accuracy: 0.9989 - precision_4: 0.9821 -

recall_4: 0.9702 - val_loss: 0.8631 - val_accuracy: 0.8287 -

val_top_k_categorical_accuracy: 0.9603 - val_precision_4:

0.8574 - val_recall_4: 0.8120

It took 24 minutes 08 seconds to train this model for 5

epochs. Experiment 5 shows the best performance with very

high accuracy, low loss, and high precision and recall, indi-

cating a highly effective model with excellent generalization.

High validation accuracy and strong precision and recall,

although slightly lower than training, indicates good model

performance and generalization.

Figure 15. Shows the accuracy and loss function of experiment 4.

6.2. Summary of the Experiments

The table below reveal an overview of the results on the training data.

Table 3. Shows the results of the training data of 5 experiments.

 Epochs Accuracy
Loss

function

Top_k_categori

cal_accuracy
Precision Recall

Experiment 1 (Feature extraction with 10% of data) 5 0.6440 1.4493 0.7654 0.7322 0.6780

Experiment 2 (Fine-tune with 10% of data) 5 0.8733 0.5395 0.9809 0.9637 0.7529

Experiment 3 (Feature extraction full dataset) 5 0.7246 1.0433 0.9136 0.8851 0.6028

Experiment 4 (Unfreezing the last 50 layers) 5 0.8926 0.3746 0.9855 0.9402 0.8460

Experiment 5 (Unfreezing the last 100 layers) 5 0.9754 0.1003 0.9989 0.9821 0.9702

The table below reveal an overview of the results on the validation data.

Table 4. Shows the results of the validation data of 5 experiments.

 Accuracy Loss function
Top_k_categorical_a

ccuracy
Precision Recall

Experiment 1 (Feature extraction with 10% of data) 0.6440 1.4493 0.6572 1.7824 0.5797

http://www.sciencepg.com/journal/ijiis

International Journal of Intelligent Information Systems http://www.sciencepg.com/journal/ijiis

74

 Accuracy Loss function
Top_k_categorical_a

ccuracy
Precision Recall

Experiment 2 (Fine-tune with 10% of data) 0.6618 1.2537 0.8893 0.8085 0.5707

Experiment 3 (Feature extraction full dataset) 0.7379 0.9651 0.9245 0.8764 0.6361

Experiment 4 (Unfreezing the last 50 layers) 0.7966 0.7817 0.9482 0.8554 0.7655

Experiment 5 (Unfreezing the last 100 layers) 0.8287 0.8631 0.9603 0.8574 0.8120

The table below reveal an overview of the results on the test data.

Table 5. shows the results of the test data of 5 experiments.

 Accuracy Loss function
Top_k_categorical

_accuracy
Precision Recall

Experiment 1 (Feature extraction with 10% of data) 0.6440 1.4493 0.6572 1.7824 0.5797

Experiment 2 (Fine-tune with 10% of data) 0.6647 1.2831 0.8886 0.7865 0.5890

Experiment 3 (Feature extraction full dataset) 0.7379 0.9615 0.9245 0.8764 0.6361

Experiment 4 (Unfreezing the last 50 layers) 0.7966 0.7817 0.9482 0.8554 0.7655

Experiment 5 (Unfreezing the last 100 layers) 0.8335 0.8631 0.9603 0.8574 0.8120

Experiment 5 (Unfreezing the last 100 layers) yielded the

best results across all metrics. It achieves an accuracy score of

97.54% on the training data and 83.35% on the test data. Other

metrics such as Top_k_categorical accuracy, precision, and

recall achieved 99.89%, 98.21%, and 97.02% respectively.

6.3. Significance of the Research

This research is significant because it shows the power of

transfer learning in achieving very high accuracy in convolu-

tional network. Besides, it reveals the potency of Efficient-

NetB0 architecture, showing that it is possible to achieve an

100% accuracy score with EfficientNetB0 by fine-tuning.

EfficientNetB0 balances accuracy and computational effi-

ciency, making it suitable for real-world applications where

resources are limited. This research can contribute to ad-

vancements in dietary monitoring, food logging, and

health-related technologies, enabling more accessible and

practical solutions for consumers.

6.4. Limitation of the Research

The optimal number of layers to fine-tune for achieving

perfect accuracy with EfficientNetB0 remains uncertain. It

often involves trial and error to determine the best configura-

tion for optimal results, presenting an opportunity for future

research. Additionally, training larger architectures like Effi-

cientNetB7, which can yield excellent results in food classi-

fication, demands significant computational resources that

were not available during this study.

7. Conclusion

The Food101 dataset is a very popular dataset for demon-

strating the potency of transfer learning. Much research has

been done on the classification of food101, but those that

achieve high accuracy results utilize heavyweight architecture,

which requires high computational resources. The research

showed that lightweight convolutional architecture, such as

fine-tuned EfficientNetB0 can achieve much better results than

most heavyweight architectures. Besides, the research also

balanced model accuracy and computational efficiency, ad-

dressing the possibility of achieving high-accuracy results in

resource-constrained environments in less than 6 epochs.

The food101 dataset used for this research contains 101

food classes, and each class has 1000 images. Five experi-

ments were performed to determine the optimal solution. The

first two experiments used 10% of the training data, which

achieved an accuracy score of 77.68% in 5 epochs after fi-

ne-tuning the last 5 layers. The last three experiments used the

entire data. The optimal solution is achieved by fine-tuning

the last 100 layers of the EfficientNetB0. The model achieved

an accuracy of 97.54% in just 5 epochs.

The research demonstrated the potency of EfficientNetB0

http://www.sciencepg.com/journal/ijiis

International Journal of Intelligent Information Systems http://www.sciencepg.com/journal/ijiis

75

on image classification. It also reveals that it is possible to

achieve an accuracy of 100% with lightweight architecture.

The major limitation is to determine the optimal number of

layers to fine-tune to achieve 100% accuracy with less than 5

epochs, presenting an opportunity for future research.

Abbreviations

CNN Convolutional Neural Network

ANN Artificial Neural Network

TL Transfer Learning

EfficientNetB0 Efficient Network Baseline 0

FLOPs Floating Point Operations

Author Contributions

Adebayo Rotimi Philip is the sole author. The author read

and approved the final manuscript.

Conflicts of Interest

The author declares no conflicts of interest.

Appendix

All codes for this research are available at

https://github.com/rotphilipadeb/food_101_vision_project

References

[1] Keiron, S., & Ryan, N. (2015). An introduction to convolu-

tional neural networks. arXiv, 1511.08458v2 [cs.NE].

[2] Shahid, N., Rappon, T., & Berta, W. (2019). Applications of

artificial neural networks in health care organizational deci-

sion-making: A scoping review. PLoS One, 14(2), e0212356.

https://doi.org/10.1371/journal.pone.0212356

[3] Ciresan, D., Meier, U., & Schmidhuber, J. (2012). Mul-

ti-column deep neural networks for image classification. In

Computer Vision and Pattern Recognition (CVPR), 2012 IEEE

Conference on (pp. 3642–3649).

[4] Mader, K. (2018). Food 101 datasets. Kaggle.

https://www.kaggle.com/datasets/kmader/food41

[5] Bossard, L., Guillaumin, M., & Van Gool, L. (2014). Food-101

– Mining discriminative components with random forests.

European Conference on Computer Vision.

[6] Ren, Z. T., Chen, X., & Wong, K. H. (2021). Neural architecture

search for lightweight neural network in food recognition.

Mathematics, 9(11), 1245. https://doi.org/10.3390/math9111245

[7] Mingxing T., Quoc, V. (2019). EfficientNet: Rethinking

Model Scaling for Convolutional Neural Networks. Interna-

tional Conference on Machine Learning, arXiv: 1905.11946

[cs.LG], https://doi.org/10.48550/arXiv.1905.11946

[8] Tan, M. (2019). EfficientNet: Improving accuracy and effi-

ciency through AutoML and model scaling. Google Research

Blog.

https://research.google/blog/efficientnet-improving-accuracy-

and-efficiency-through-automl-and-model-scaling/

[9] Mathswork. (2021). EfficientNetB0. MathWorks.

https://www.mathworks.com/help/deeplearning/ref/efficientne

tb0.html

[10] Sanchez, J., Perronnin, F., Mensink, T., & Verbeek, J. (2013).

Image classification with the Fisher vector: Theory and prac-

tice. International Journal of Computer Vision, 105(3),

222-245. https://doi.org/10.1007/s11263-013-0636-x

[11] Lazebnik, S., Schmid, C., & Ponce, J. (2006). Beyond bags of

features: Spatial pyramid matching for recognizing natural

scene categories. In 2006 IEEE Computer Society Conference

on Computer Vision and Pattern Recognition (CVPR'06) (pp.

2169-2178). IEEE. https://doi.org/10.1109/CVPR.2006.68

[12] Joutou, T., & Yanai, K. (2009). A food image recognition

system with multiple kernel learning. In Proceedings of the

16th International Conference on Image Processing (pp.

285-288). IEEE. https://doi.org/10.1109/ICIP.2009.5413400

[13] Chen, M. Y., et al. (2009). Automatic Chinese food identifi-

cation and quantity estimation. SIGGRAPH Asia Technical

Briefs. https://doi.org/10.1145/2407746.2407775

[14] Chen, M., Dhingra, K., Wu, W., Yang, L., Sukthankar, R., &

Yang, J. (2009). PFID: Pittsburgh fast- food image dataset. In

ICIP.

[15] Hassannejad, H., Matrella, G., Ciampolini, P., De Munari, I.,

Mordonini, M., & Cagnoni, S. (2016). Food image recognition

using very deep convolutional networks. Proceedings of the

2nd International Workshop on Multimedia Assisted Dietary

Management (pp. 41–49). ACM.

https://doi.org/10.1145/2986035.2986042

[16] Lee, K. H., He, X., Zhang, L., & Yang, L. (2017). CleanNet:

Transfer learning for scalable image classifier training with

label noise. arXiv. https://doi.org/10.48550/arXiv.1711.07131

[17] Singh, P., & Susan, S. (2023). Transfer learning using very

deep pre-trained models for food image classification. 2023

International Conference on Computing, Communication and

Networking Technologies (ICCCNT).

https://doi.org/10.1109/ICCCNT56998.2023.10307479

[18] Rudraja, V. (2022). Food image classification using various

CNN models. International Journal of Innovative Research in

Technology, 9(3), 626.

[19] VijayaKumari, G., Priyanka, V., & Vishwanath, P. (2022).

Food classification using transfer learning technique. Global

Transitions Proceedings, 3(1), 225-229.

https://doi.org/10.1016/j.gltp.2022.03.027

[20] Hosna, A., Merry, E., & Gyalmo, J. (2022). Transfer learning:

A friendly introduction. Journal of Big Data, 9, 102.

https://doi.org/10.1186/s40537-022-00652-w

http://www.sciencepg.com/journal/ijiis

International Journal of Intelligent Information Systems http://www.sciencepg.com/journal/ijiis

76

[21] Jenan, A., A, & Raidah, S., K (2023). Integration of Effi-

cientNetB0 and Machine Learning for Fingerprint Classifica-

tion, Informatica, 49–56,

https://doi.org/10.31449/inf.v47i5.4527

[22] Ahmed, T., & Sabab, N. H. (2020). Classification and under-

standing of cloud structures via satellite images with Effi-

cientUNet. Earth and Space Science Open Archive.

https://doi.org/10.1002/essoar.10507423.1

[23] Wijdan, R., A., Nidhal, K., E., & Abdul, M., G. (2021). Hybrid

Deep Neural Network for Facial Expressions Recognition.

Indonesian Journal of Electrical Engineering and Informatics

(IJEEI), 9(4), 993-1007, ISSN: 2089-3272,

https://doi.org/10.52549/ijeei.v9i4.3425

[24] Neha, S., Sheifali, G., Mana, S. Reshan, A., Adel, S., Hani, A.,

Asadullah, S. (2021). EfficientNetB0 cum FPN Based Seman-

tic Segmentation of Gastrointestinal Tract Organs in MRI

Scans. National Centre of Biotechnology Information, 13(14):

2399. https://doi.org/10.3390/diagnostics13142399

[25] Paolo, D., A., Vito, P., P., Lorenzo, R., A., Francesca, O., B.

(2024). Top-tuning: A study on transfer learning for an effi-

cient alternative to fine tuning for image classification with fast

kernel methods. Image and Vision Computing,

https://doi.org/10.1016/j.imavis.2023.104894

[26] Manoj, K., S., Brajesh, K. (2023). Fine tuning the pre-trained

Convolutional Neural Network models for Hyperspectral Im-

age Classification using transfer learning. Computer Vision

and Robotics, 271-283,

https://doi.org/10.1007/978-981-19-7892-0_21

[27] Jorge, S., Florent, P., Thomas, M., & Jakob, V. (2013). Image

Classification with the Fisher Vector: Theory and Practice.

International Journal of Computer Vision, 105(3),

https://doi.org/10.1007/s11263-013-0636-x

[28] Taichi, J., & Keiji, Y. (2009). A food image recognition system

with Multiple Kernel Learning. International Conference on

Image Processing, 285 - 288,

https://doi.org/10.1109/ICIP.2009.5413400

[29] Mei-Yun, C., Yung-Hsiang, Y., Chia-Ju, H., & Shih-Han, W.

(2012). Automatic Chinese food identification and quantity

estimation. SIGGRAPH Asia 2012 Technical Briefs Confer-

ence, https://doi.org/10.1145/2407746.2407775

[30] Lukas, B. Matthieu, G., & Luc-Van, G. (2014). Food-101 –

mining discriminative components with Random Forests.

Conference: European Conference on Computer Vision,

https://doi.org/10.1007/978-3-319-10599-4_29

[31] Kuang-Huei, L., Xiaodong, H., Lei, Z., & Linjun, Y. (2018).

Food-101N dataset.

https://paperswithcode.com/dataset/food-101n

[32] Francis, J., P., & Alon, S., A. (2021). Empirical analysis of a

fine-tuned Deep Convolutional Model in classifying and de-

tecting malaria parasites from blood smears. Transactions on

Internet and Information Systems, 15(1): 147-165,

https://doi.org/10.3837/tiis.2021.01.009

[33] Oguzhan, T., & Tahir, C. (2023). A review of transfer learning:

Advantages, strategies and types. International Conference on

Modern and Advanced Research.

https://doi.org/10.59287/icmar.1316

[34] Tan, M. (2018). MnasNet: Towards automating the design of

mobile machine learning models. Google Brain Team.

[35] Ahdi, M. W., Sjamsuri, K., Kunaefi, A., & Yusuf, A. (2023).

Convolutional neural network (CNN) EfficientNet-B0 model

architecture for paddy diseases classification. 14th Interna-

tional Conference on Information & Communication Tech-

nology and System (ICTS).

https://doi.org/10.1109/ICTS58770.2023.10330828

[36] Ghandour, C., El-Shafai, W., & El-Rabaie, S. (2023). Medical

image enhancement algorithms using deep learning-based

convolutional neural networks. Journal of Optics, 1-11.

[37] Yixing, F. (2020). Image classification via fine-tuning with

EfficientNet.

[38] Venkatesh, B. (2021). How does the machine read images and

use them in computer vision? Topcoder.

https://www.topcoder.com/thrive/articles/how-does-the-machi

ne-read-images-and- use-them-in-computer-vision

[39] Zhou, K., Oh, S. K., Pedrycz, W., & Qiu, J. (2023). Data pre-

processing strategy in constructing convolutional neural net-

work classifier based on constrained particle swarm optimiza-

tion with fuzzy penalty function. Engineering Applications of

Artificial Intelligence, 117, 105580.

[40] Yousif, M., & Balfaqih, M. (2023). Enhancing the accuracy of

image classification using deep learning and preprocessing

methods. Artificial Intelligence and Robotics Development

Journal, 3(4), 269-281.

https://doi.org/10.52098/airdj.2023348

[41] Norhikmah, R., Lutfhi, A., & Rumini. (2022). The effect of

layer batch normalization and dropout on CNN model per-

formance for facial expression classification. International

Journal on Informatics Visualization.

https://doi.org/10.30630/joiv.6.2-2.921

[42] Şengöz, N., Yiğit, T., Özmen, Ö., & Isik, A. H. (2022). Im-

portance of preprocessing in histopathology image classifica-

tion using deep convolutional neural networks. Advances in

Artificial Intelligence Research, 2(1), 1-6.

[43] Pavlo, R. (2017). Impact of training set batch size on the per-

formance of convolutional neural networks for diverse datasets.

Information Technology and Management Science, 20(1),

20-24. https://doi.org/10.1515/itms-2017-0003

[44] Sakib, M., & Fang-Xiang, W. (2021). Diagnosis of autism

spectrum disorder with convolutional autoencoder and struc-

tural MRI images. Neural Engineering Techniques for Autism

Spectrum Disorder, 1(3), 23-38.

https://doi.org/10.1016/B978-0-12-822822-7.00003-X

[45] Wang, et al. (2019). What is a convolutional neural network?

CNN explainer. https://poloclub.github.io/cnn-explainer/

[46] Klingler, N. (2024). EfficientNet: Optimizing deep learning

efficiency. Viso.ai. https://viso.ai/deep-learning/efficientnet/

http://www.sciencepg.com/journal/ijiis
https://poloclub.github.io/cnn-explainer/

International Journal of Intelligent Information Systems http://www.sciencepg.com/journal/ijiis

77

[47] Kattenborn, T., Leitloff, J., Schiefer, F., & Hinz, S. (2021). Review

on convolutional neural networks (CNN) in vegetation remote

sensing. ISPRS Journal of Photogrammetry and Remote Sensing,

173, 24-49. https://doi.org/10.1016/j.isprsjprs.2020.12.010

[48] Toriba Scientific. (2023). Batch processing. HORIBA.

https://www.horiba.com/int/scientific/products/detail/action/s

how/Product/batch-processing-1681/

[49] Yogeshwari, M., & Thailambal, G. (2023). Automatic feature

extraction and detection of plant leaf disease using GLCM

features and convolutional neural networks. Materials Today:

Proceedings, 81, 530-536.

[50] Pranjal, S., & Seba, S. (2023). Transfer learning using very

deep pre-trained models for food image classification. 14th

International Conference on Computing Communication and

Networking Technologies (ICCCNT).

https://doi.org/10.1109/ICCCNT56998.2023.10307479

http://www.sciencepg.com/journal/ijiis
https://doi.org/10.1109/ICCCNT56998.2023.10307479

