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Abstract 

Much research has been done on the classification of the food101 dataset, but much of this research which achieved an accuracy 

score of more than 90% explores heavyweight architecture such as EfficientNetB7, Visual Geometry Group19, ResNet-200, 

Inception v4, DenseNet-201, ResNeXt-101, MobileNet v3 and many more. This study explores the classification of the Food101 

dataset using the EfficientNetB0 architecture, a lightweight architecture. Compared to other popular CNN architecture, 

EfficientNetB0 has relatively small parameters, which makes it computationally efficient and suitable for deployment on 

resource-constraint environments. The research aims to balance model accuracy and computational efficiency, addressing the 

need for resource-constrained environments. Five experiments were conducted while varying the number of fine-tuned layers. 

Results demonstrate that the fine-tuned EfficientNetB0 model achieves an accuracy score of accuracy score of 97.54%, 

Top_k_categorical accuracy of 99.89%, precision of 98.21%, and recall of 97.02% in just 5 epochs. This research will 

significantly contribute to the field of transfer learning by developing specialized models that excel in target tasks. Besides, it will 

advance dietary monitoring, food logging, and health-related technologies, enabling more accessible and practical solutions for 

consumers. However, the optimal number of layers to fine-tune for achieving perfect accuracy with EfficientNetB0 remains 

uncertain. It often involves trial and error to determine the best configuration for optimal results, presenting an opportunity for 

future research. 
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1. Introduction 

1.1. Background 

Machine learning has experienced advancement in recent 

years, with the emergence of Artificial Neural Network (ANN) 

[1], a machine learning model inspired by the human brain, 

consisting of interconnected nodes (neurons) that process and 

transmit information to solve complex tasks. ANN networks 

have been used to solve problems in medicine, industrials, and 

even in services [2]. One of the most impressive forms of 

ANN architecture is that of the Convolutional Neural Net-

work (CNN). The CNN also called computer vision, is a type 

of neural network designed for images and video analysis. It 

makes use of convolutional and pooling layers to extract 

features from images, together with dense layers (fully con-

nected layers) for classification and regression tasks [3]. CNN 

is known and widely used for image recognition, object de-
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tection, and image segmentation in AI. 

One intriguing application of CNN is in the domain of food 

recognition, which this research aims to explore. The Food 

101 dataset is a well-known benchmark for this task, con-

taining 101 categories of food items with 1,000 images each, 

resulting in a total of 101,000 images [4]. Each image in the 

dataset is labeled, providing a rich resource for training and 

evaluating image classification models [4]. The Food 101 

dataset provides multifaceted challenges. Its substantial size 

demands significant computational resources for processing 

and training models. The high intra-class variability and in-

ter-class similarity add to the complexity, making it difficult 

to accurately distinguish between similar food items. Besides, 

the dataset includes images of varying quality, background, 

light conditions, and noise levels, which can affect model 

performance. 

Several papers have been published using the food101 da-

taset, but the accuracy scores obtained have not been phe-

nomenal. For instance, Lukas, Matthieu, & Luc (2018) pub-

lished a paper in 2018 titled "Food-101 – Mining Discrimina-

tive Components with Random Forests" where they obtained 

an accuracy score of 50.76% [5]. More so, Ren, Xinying, & 

Khai (2021) worked on the Food 101 datasets classification 

problem using several models: for LNAS-NET model, they 

obtained an accuracy score of 49.3% after 100 epochs, Mo-

bileNET 49.1% accuracy score after 100 epochs, mo-

bileNETv2, 17.2% after 100 epochs, ShuffleNETv2 44.1% 

after 100 epochs [6]. Those studies that achieved high accu-

racy rates above 90% relied on heavyweight architectures, 

which are unsuitable for resource-constrained environments. 

For instance, Mingxing (2019) obtained an accuracy score of 

91.7% on CIFAR-100 dataset and 98.8% on flower datasets 

using EfficientNetB7 [7]. Also, Rudraja (2022) obtained an 

accuracy of 93.7% using ResNet-152, a heavyweight archi-

tecture with over 60 million parameters [8].  

This research aims to propose transfer learning models such 

as EfficientNetB0, which is partially fine-tuned (layers are 

made trainable) to unravel the Food 101 problem with a better 

accuracy score. Also, the research aims to balance model 

accuracy and computational efficiency, addressing the need 

for resource-constrained environments. This work will not 

only demonstrate the power and flexibility of transfer learning 

in tackling complex image classification problems but will 

also provide valuable insights into the practical applications 

of deep learning in food recognition. This endeavor will 

bridge the gap between advanced machine learning tech-

niques and real-world applications, highlighting the trans-

formative potential of AI in everyday life. 

1.2. Aims and Objective of the Research 

This research aims to achieve the following 

1) To achieve an optimal solution of food101 classification 

with fine-tuned EfficientNetB0. 

2) To show that lightweight convolutional neural network 

can achieve outstanding results that is only possible with 

heavyweight convolutional neural work 

3) To balance model accuracy and computational efficiency, 

addressing the need for resource-constrained environments. 

2. Literature Review 

Image classification is a key problem in computer vision, 

with many recent improvements coming from object recog-

nition [6]. Traditional methods use local or dense grid de-

scriptors, pooled into vectors, and then classified with SVMs. 

Recent methods emphasize nonlinear feature encodings, like 

Fisher Vectors and spatial pooling [9]. Jorge et al. (2013) used 

the Fisher Kernel framework to describe patches by how they 

differ from a general Gaussian mixture model, resulting in 

what we call Fisher Vectors (FV) [10]. They use this model to 

describe an image for classification by extracting local 

patches, encoding them into a high-dimensional vector, and 

combining them into an overall image signature. Furthermore, 

Lazebnik, Schmid & Ponce (2006) introduces a method for 

recognizing scene categories using approximate global geo-

metric correspondence [11]. It works by dividing an image 

into progressively smaller sub-regions and calculating histo-

grams of local features within each sub-region. Findings show 

that the method surpasses current state-of-the-art results on 

the Caltech-101 database and achieves high accuracy on a 

large database of fifteen natural scene categories. 

Taichi & Keiji (2009) introduced an automatic food image 

recognition system that helps record daily meals. Using Mul-

tiple Kernel Learning (MKL), the system integrates image 

features like color, texture, and SIFT [12]. A prototype was 

tested on food images from phone cameras, achieving a 61.34% 

classification rate for 50 food types. This is the first practical 

food image classification system. Mei-Yun Chen, et al. (2009) 

addressed the issues of feature descriptors in the food identi-

fication problem and introduced a preliminary approach for 

quantity estimation using depth information [13]. It combines 

SIFT, Local Binary Pattern, Gabor, and color features, train-

ing a multi-label SVM classifier for each. Using 50 food 

categories with 100 images each, it achieves 68.3% accuracy 

and over 80% accuracy in top-N candidates, making mobile 

applications practical. 

More so, Chen et al. (2009), presented the first visual dataset 

of fast foods, including 4,545 still images, 606 stereo pairs, 303 

360° videos for structure from motion, and 27 priva-

cy-preserving videos of volunteers eating [14]. The dataset, 

aimed at dietary assessment research, features 101 foods from 11 

fast food chains, with images captured in restaurants and a lab. 

They benchmark it using color histograms and SIFT features 

with a classifier. Lukas, Matthieu, & Luc (2018) researched the 

classification of the Food 101 datasets using Random Forests to 

identify key parts for all classes [5]. For efficiency, the re-

searchers focus on patches aligned with image super-pixels 

called components. They tested the method on a dataset of 101 

food categories with 101,000 images, achieving an average ac-
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curacy of 50.76%. The model outperforms other methods, except 

CNNs, and surpasses SVM classification on Improved Fisher 

Vectors and other part-mining algorithms. 

Hassannejad et al (2016) examined the effectiveness of 

deep convolutional neural networks (DCNNs) in identifying 

foods from photographs. This study utilized various 

DCNN-related techniques, including activation features ex-

tracted from pre-trained DCNNs and pre-training on 

large-scale ImageNet data [15]. The model achieved a classi-

fication success rate, with accuracy rates of 78.77 percent and 

67.57 percent for the UECFOOD100/256 dataset. 

Kuang-Huei et al (2017) researched on the classification of 

food-101N introduced in a CVPR 2018 paper CleanNet [16]. 

The food-101N has 310,009 images of food recipes and 101 

food classes. They used transfer learning (ResNet-50) to ad-

dress label noise and keep verification labels for part of the 

classes to only learn from human supervision. The result 

shows a top-1 accuracy score of 81.44% compared to 81.67% 

for the Food-101 dataset and reduced label noise detection 

error rate on held-out classes where no human supervision is 

available by 41.5% compared to current weakly supervised 

methods. 

Mingxing & Vuoc (2019) studied the model scaling of the 

EfficientNet architecture and identified factors such as net-

work depth, width, and resolution that can lead to better per-

formance [17]. The EfficientNetB7 architecture achieves 84.3% 

top-1 accuracy on ImageNet, 91.7% accuracy score on 

CIFAR-100, and 98.8% on flower datasets. Pranjal & Seba 

(2023) researched the performances of five popular very deep 

pre-trained networks namely, Inception-v3 with 48 layers, 

EfficientNet-B0 with 237 layers, Xception with 71 layers, 

DenseNet-121 with 121 layers, and MobileNet with 53 layers, 

for the classification of food images from the benchmark 

Food-101 [18]. findings show that Xception gives the best 

performance for classifying the 101 categories of food images, 

with an accuracy of 84.54%, significantly outperforming the 

other deep pre-trained networks. 

Rudraja, V. (2022) worked on the classification of 

food-101 datasets using several transfer learning models [19]. 

The researcher leverage on MobileNetV2, InceptionV3, Ef-

ficient Net, Resnet152, and Resnet50. They obtained an ac-

curacy score of 92.50% for MobileNetV2, 93.89% for Incep-

tionV3, 93.25% for EfficientNetB2, 93.79% for Resnet152, 

and 92.46% for Resnet50 respectively. VijayaKumari, Pri-

yanka, and Vishwanath (2022) employed transfer learning 

techniques to categorize various food products into their ap-

propriate categories [20]. Using Efficientnetb0, a transfer 

learning technique, the developed model classified 101 dis-

tinct food kinds with an accuracy of 80%. When compared 

with other food classification models, the EfficientNetB0 

outperformed other models with the best accuracy. 

EfficientNetB0 architecture has been integrated with other 

architectures to improve performance. Jenan & Raidah (2023) 

used the EfficientNetB0 with Principal Component Analysis 

(PCA) and Random Forest (RF) to distinguish between the 

fingerprints of male and female gender [21]. The SOCOFing 

fingerprint dataset was fed into PCA to decrease the dimen-

sion of the feature images and RF classifier for fingerprint 

classification. They obtained an accuracy of 99.91% [21]. 

Furthermore, Wijdan et al. (2021) proposed a hybrid model 

using the FER2013 dataset for facial expression which inte-

grates two CNN models, one of which is EfficientNetB0. The 

hybrid model obtained an accuracy score of 74.39%, outper-

forming other state-of-the-art classification methods [22]. The 

research done by Neha et al. (2021) presents a hybrid encod-

er–a decoder-based model for segmenting healthy organs in 

the GI tract in biomedical images of cancer patients [23]. 

EfficientNetB0 is used as a bottom-up encoder architecture 

for downsampling to capture contextual information by ex-

tracting meaningful and discriminative features from input 

images. The encoder EfficientNetB0 model achieves Dice 

coefficient and Jaccard index values of 0.8975 and 0.8832, 

respectively which outperform existing ecoder systems: 

ResNet 50, MobileNet V2, and Timm Gernet [23]. 

The fine-tuning lightweight model has been proven to im-

prove accuracy. To justify this claim Paolo et al. (2024) per-

formed 3000 training processes focusing on 32 small to me-

dium-sized target datasets. They show that the top-tuning 

approach provides comparable accuracy concerning fi-

ne-tuning, and the results suggest that top-tuning is an effec-

tive alternative to fine-tuning in small/medium datasets, es-

pecially useful when training time efficiency and computa-

tional resource saving are crucial [24]. Furthermore, Manoj & 

Brajesh (2023) fine-tune six pre-trained CNN models: Effi-

cient-NetB0, EfficientNetB7, ResNet50, VGG19, Dense-

Net121, and DenseNet201 are fine-tuned for hyperspectral 

image classification. The results show that fine-tuning im-

proves performance and saves computational resources. 

Among the models, EfficientNetB0 performs better than 

others with 90.79% accuracy for the Houston image [25]. 

Francis & Alon's (2021) work supports previous studies that 

fine-tuning improves accuracy. They evaluated the efficiency 

EfficientNetB0 model to diagnose malaria parasite infections 

in blood smears. The fine-tuned model obtained the highest 

accuracy of 94.70% after 50 epochs [26]. 

From the literature review, researchers achieved high ac-

curacy rates in classifying the Food101 dataset using the more 

complex EfficientNetB7 architecture, which attained a 93.7% 

accuracy rate. However, EfficientNetB7 is resource-intensive, 

requiring significant computational power to process even a 

few epochs. Other CNN models, such as MobileNetV2, In-

ceptionV3, EfficientNetB2, ResNet152, and ResNet50, 

achieved up to 93.89% accuracy on the training dataset after 

100 epochs. This research aims to surpass the highest accu-

racy model with a less resource-intensive architecture in 

fewer than 10 epochs. 

Summary of the literature review (table) 
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Table 1. Shows the summary of the literature review. 

Author(s) Problem definition Model used Results 

Jorge et al. [27] 
Used the Fisher Vectors Framework to 

describe image classification 
Fisher Vectors Framework 

Successfully classify images into their 

respective classes 

Lazebnik, Schmid 

& Ponce [11] 

Introduced a method for recognizing scene 

categories using approximate global geo-

metric correspondence. 

Nill 

the method surpasses current 

state-of-the-art results on the Caltech-101 

database 

Taichi & Keiji [28] 

Introduced an automatic food image 

recognition system that helps record daily 

meals. 

Multiple Kernel Learning 

(MKL) 

Achieved a 61.34% classification rate for 

50 food types test data 

Mei-Yun Chen, et 

al. [29] 

Addressed the issues of feature descriptors 

in the food identification problem 

Multi-label SVM classifi-

er 

Achieved 68.3% accuracy and 80% ac-

curacy in top-N candidates on 50 food 

classes and 100 images in each class 

Chen et al. [13] 

Aimed at dietary assessment research. 

They presented the first food101 datasets 

with limited images 

Color histograms and 

SIFT features with a clas-

sifier 

Nill 

Lukas, Matthieu, 

& Luc [30] 

Researched the classification of the Food 

101 datasets 
Random Forests 

Achieved an average accuracy of 

50.76%. The model outperforms SVM 

classification and a Fisher Vectors algo-

rithm 

Hassannejad et al 

[15] 

Examined the effectiveness of deep con-

volutional neural networks (DCNNs) in 

identifying foods from photographs. 

DCNN-related techniques Achieved accuracy of 78.77 percent 

Kuang-Huei et al 

[31] 

researched on the classification of 

food-101N, a food dataset with 310,009 

images 

Used transfer learning 

(ResNet-50) to address 

label noise 

Achieved top-1 accuracy score of 81.44% 

compared to 81.67% for the Food-101 

dataset 

Mingxing & Vuoc 

[7] 

Studied the model scaling of the Effi-

cientNet architecture and identified factors 

that can lead to better performance 

EfficientNetB7 Network 

Achieved 84.3% top-1 accuracy on 

ImageNet, 91.7% accuracy score on 

CIFAR-100, and 98.8% on flower da-

tasets 

Pranjal & Seba 

[29] 

Researched the performances of five pop-

ular pre-trained networks for the classifi-

cation of food images from the benchmark 

Food-101. 

Inception-v3 with 48 lay-

ers, EfficientNet-B0 with 

237 layers, Xception with 

71 layers, DenseNet-121 

with 121 layers, and Mo-

bileNet with 53 layers 

Findings show that Xception gives the 

best performance for classifying the 101 

categories of food images, with an accu-

racy of 84.54%. 

Rudraja, V. [18] 

worked on the classification of food-101 

datasets using several transfer learning 

models. 

MobileNetV2, Incep-

tionV3, Efficient Net, 

Resnet152, and Resnet50. 

Accuracy of 92.50% for MobileNetV2, 

93.89% for InceptionV3, 93.25% for 

EfficientNetB7, 93.79% for Resnet152, 

and 92.46% for Resnet50. 

VijayaKumari, 

Priyanka, and 

Vishwanat [19] 

Employed transfer learning techniques to 

categorize various food products into their 

appropriate categories. 

Efficientnetb0 
Achieved an accuracy of 80%. 

 

 

Author(s) Problem definition Model used  Result 

Jenan & 

Raidah [21] 

Distinguished between the fingerprints of male and 

female gender using the SOCOFing fingerprint 

dataset 

the EfficientNetB0 with 

Principal Component 

Analysis (PCA) and 

Random Forest (RF) 

They obtained an accuracy of 

99.91% 
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Author(s) Problem definition Model used  Result 

Wijdan et al. 

[23] 

proposed a hybrid model using the FER2013 da-

taset for facial expression which integrates Effi-

cientNetB0 with another model 

 
obtained an accuracy score of 

74.39%, 

Neha et al. 

[24] 

presents a hybrid encoder–a decoder-based model 

for segmenting healthy organs in the GI tract in 

biomedical images of cancer patients 

EfficientNetB0 is used for 

the encoder system 

Dice coefficient of 0.8975 and Jac-

card index values 0.8832 

Paolo et al. 

[25] 

performed 3000 training processes focusing on 32 

small to medium-sized target dataset to show that the 

top-tuning approach provides comparable accuracy. 

Lightweight model 

results suggest that top-tuning is an 

effective alternative to fine-tuning in 

small/medium datasets, 

Manoj & 

Brajesh [26] 
hyperspectral image classification 

Efficient-NetB0, Efficient-

NetB7, ResNet50, VGG19, 

DenseNet121, and Dense-

Net201 

The results show that fine-tuning 

improves performance and saves 

computational resources. 

Francis & 

Alon's [32] 

evaluated the efficiency EfficientNetB0 model to 

diagnose malaria parasite infections in blood 

smears 

EfficientNetB0 

The fine-tuned model obtained the 

highest accuracy of 94.70% after 50 

epochs. 

 

3. Transfer Learning 

When building a machine learning model, one question to 

often ask is if similar projects have been done in the past. 

Instead of building a model from the start, we can benefit from 

pre-trained models and fine-tune them to the problems. This is 

called transfer learning. Transfer learning (TL) is a machine 

learning (ML) technique where a model pre-trained on one 

task is fine-tuned for a new, related task [33]. Based on the 

fundamental principle of transferability of experiences, TL 

emulates human capability to leverage previous knowledge in 

new tasks [20]. Building a new model can be time-consuming 

and can be an intensive process that requires a large amount of 

data, computing power, and several iterations before it is 

ready for production. For instance, a machine learning model 

that is trained to identify the images of dogs can be fine-tuned 

to identify the images of cats, using a smaller image size that 

highlights the feature differences between dogs and cats. 

Transfer learning is highly beneficial in creating machine 

learning models. One of the benefits is that it enhances effi-

ciency [33]. Building machine learning models requires a 

large volume of data, is time-consuming, and computationally 

expensive. However, transfer learning takes care of these 

deficiencies as it can work with a small amount of data. 

Transfer learning models often demonstrate greater robust-

ness in diverse and challenging environments. They can better 

handle real-world variability and noise, having been exposed 

to a wide range of scenarios in their initial training, thus they 

give better results [19]. 

 

3.1. The Architecture of the Model 

While we can build our own CNN network to achieve high 

accuracy on the Food101 dataset, we can leverage predefined 

models already built by others. The EfficientNet family is the 

ideal transfer learning model for this task, offering superior 

performance for image classification due to its optimized 

scaling of depth, width, and resolution. EfficientNet's com-

pound scaling method can achieve state-of-the-art results with 

fewer parameters and lower computational costs. [34]. 

3.2. EfficientNetB0 

EfficientNet is a type of Convolutional Neural Network 

(CNN) that improves accuracy by evenly increasing the 

network's depth, width, and resolution [8]. EfficientNetB0 is 

the baseline model in the EfficientNet family, from which 

other complex EfficientNet models (B1 – B7) are developed. 

Introduced by Google in 2019, EfficientNet can achieve high 

performance with fewer parameters and FLOPs (floating 

point operations) compared to other CNN models [9]. This 

makes EfficientNetB models ideal for deployment in re-

source-constrained environments, offering a balance of speed 

and accuracy for image classification tasks [9]. It is widely 

used in various applications, from mobile devices to 

large-scale cloud environments. 

EfficientNet models perform more efficiently than most 

existing CNN models trained on the ImageNet dataset. Figure 

1 shows the efficiency of EfficientNetB0 – B7. Just like other 

CNN models, increasing the complexity of EfficientNets lead 

to better accuracy, though they require or demand more 

computational resources. 
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Figure 1. Shows the performance of the EfficientNets and other CNN transfer learning networks [9]. 

3.2.1. Characteristics of EfficientNets 

EfficientNetB0 comprises 257 layers, whereas Efficient-

NetB7, the most advanced model in the EfficientNetB family, 

contains 813 layers [9]. The EfficientNetB architecture is 

generally divided into two major components: the stem layer 

and the subsequent layers. Each model within the Efficient-

NetB series, from B0 to B7, consists of 7 blocks, with each 

block containing multiple sub-block layers [35]. Efficient-

NetB0 features the fewest sub-block layers, and the number of 

these layers increases progressively from B0 to B7, scaling up 

in complexity and capability [36]. 

3.2.2. Architecture of EfficientNetB0 

To understand the architecture of EfficientNetB0, we can 

run this below code in the Google Colab or Jupyter Notebook. 

import tensorflow as tf 

base_model = 

tf.keras.applications.efficientnet_v2.EfficientNetV2B0(includ

e_top=False) 

# Check layers in our base model 

for layer_number, layer in enumerate(base_model.layers): 

print(layer_number, layer.name) 

The outputs of the codes are displayed below. Figure 2 

shows the blocks (layers) of the EfficientNetB0. There are 

237 layers, but Figure 2 only shows the first 21 layers. Ob-

serving figures 2 and 3, we can see that there are two 

components in EfficientNetB0: the stem component and the 

block component. The stem component is made up of the first 

five layers: input layer, rescaling layer, normalization layer, 

Convolutional layer (Conv2D), Batch Normalization layer 

(stem_bn), and the activation layer (stem activation), while 

the block component has seven blocks (1, 2, 3, 4, 5, 6, and 7 

blocks) and each block has several sub-layers. 

 
Figure 2. Shows the layers of the EfficientNetB0 architecture. 

Running the code below gives us more detailed information 

about the architecture of EfficientNetB0 

base_model.summary() 
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Figure 3. Shows the layers of the EfficientNetB0. 

(i). Input Layer 

The input layer is the first layer in the model architecture. It 

is the layer where the image data is prepared for subsequent 

layers. The input layer expects images of a specific size, 

typically 224x224 pixels for EfficientNetB0 [37]. Other big-

ger models (B1 – B7) take a higher image resolution. For 

instance, the image resolution for B0 model – B7 model are 

given in table 2. 

Table 2. Shows image resolution of EfficientNets. 

Models  Image Resolution 

EfficientNetB0 224 x 224 

EfficientNetB1 240 x 240 

EfficientNetB2 260 x 260 

EfficientNetB3 300 x 300 

EfficientNetB4 380 x 380 

EfficientNetB5 456 x 456 

EfficientNetB6 528 x 528 

EfficientNetB7 600 x 600 

Datasets are stored in different shapes and forms, which 

could be in a vector or matrix or a table. images and videos 

with multiple colour channels are represented as (batch_size, 

height, width, channels), where batch_size is the number of 

images processed simultaneously, height and width are the 

dimensions of the image, and the channels represent red, 

green, and blue colours (RGB) from which all image colours 

are made. For instance, let’s assume that the height of the 

image in figure 4 is 512 pixels and the width is 320 pixels, 

then the image is made up 163,840 pixels. 

 
Figure 4. Shows an image representation in pixels [39]. 
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Each pixel is a combination of three colors (Red, Green, 

and Blue) at varying intensities. The intensity value for these 

colors is represented from 0 to 255, indicating how much of 

the color is present in the pixel [38]. A pixel with a color 

intensity value of (235, 10, 10) exhibits a high red color in-

tensity. Consequently, a white pixel is represented numeri-

cally as (255, 255, 255), indicating maximum intensity for red, 

green, and blue, while a black pixel is represented as (0, 0, 0), 

indicating the absence of color intensity in all three compo-

nents [38]. Figure 5 shows the colour intensities of the 

three-color channels (Red, Green, and Blue). 

 
Figure 5. Shows the channels (red, green, blue colors) in images [39]. 

The shape of an input image is crucial in Convolutional 

Neural Networks (CNNs) as they are trained to process data in 

specific formats. CNNs expect data to be represented in ap-

propriate shapes to function correctly [37]. A significant issue 

in image processing for CNNs is the inconsistency in image 

shapes across datasets [39]. For example, EfficientNetB0 

requires images to be in the shape of 224x224x3 for pro-

cessing. However, the images in the Food101 dataset (the 

dataset for this research) are typically 384x512x3, with some 

even differing from this representation [5]. Due to these dis-

crepancies, it is necessary to resize the images to 224x224 for 

compatibility with the EfficientNetB0 model [40]. 

Another concern is the datatype of the images. Machine 

learning algorithms process numerical data, typically in in-

teger (int) or floating-point (float) formats [40]. However, 

some images are stored in unit or object formats. These 

datatypes need to be converted to numerical formats before 

being fed into the algorithm. 

(ii). Image Preprocessing 

The second layer in the EfficientNet architecture is the 

image rescaling. Image preprocessing, which can also be 

termed image rescaling is processing or refining the image 

input to a format that can be processed by the CNN to enhance 

learning and improve performance [41]. Scaling input fea-

tures through normalization and standardization, generating 

additional training samples via data augmentation, filtering 

noise through noise reduction, and performing feature engi-

neering are essential steps that can significantly enhance a 

neural network's performance [39]. 

Image resizing is a critical preprocessing step in machine 

learning, especially in computer vision tasks. It involves ad-

justing the dimensions of an image to fit the input require-

ments of a model. Most convolutional neural networks (CNNs) 

expect images to have uniform dimensions, making resizing 

necessary to ensure consistency across the dataset. Resizing 

images serves multiple purposes. It reduces computational 

complexity, requires less memory and processing power, and 

helps handle varying image resolutions [41]. 

However, resizing images must be done carefully to 

maintain the aspect ratio and avoid distortion [38]. Distorting 

an image can lead to the loss of critical features and can ad-

versely affect model performance. Techniques such as pad-

ding can be used to resize images without distortion. For 

example, if an image is resized to a square shape, padding can 

be added to maintain the original aspect ratio by adding bor-

ders to the image. Another consideration during resizing is the 

interpolation method used. Different interpolation methods, 

such as nearest-neighbor, bilinear, and bicubic, can impact the 

quality of the resized image. 

(iii). Normalization Layer 

Normalization technique involves adjusting the range of 

pixel values in an image to a standardized scale, typically 

between 0 and 1 or -1 and 1. The primary rationale behind 

normalization is to enhance the convergence speed and sta-

bility of training algorithms [41]. By scaling the pixel values, 

normalization ensures that the numerical input to the neural 

network is more uniform, which helps in mitigating issues 

related to gradient vanishing or explosion during the training 

phase [41]. This preprocessing step is especially critical when 

using activation functions like sigmoid or hyperbolic tangent 

(tanh), which are sensitive to the scale of input data. 

The research done by Norhikmah, Afdhal & Rumini (2022) 

demonstrated that normalization accelerates the training 

process and improves the overall performance of the machine 

learning models [41]. This improvement is attributed to the 

reduction in numerical instability and the promotion of faster 

gradient descent convergence. Furthermore, normalization 

prevents the network from depending on the original range of 

input data, thus enhancing the model's generalization capa-

bilities across different datasets [42]. Common normalization 

techniques include min-max normalization, which scales the 

pixel values to a specified range, and z-score normalization, 

which adjusts the values based on the mean and standard 

deviation of the dataset. 

(iv). Batch Size 

The batch size is the number of samples that will be pro-

cessed by a network at one time. Assuming we have 960 
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images of food and the batch size is 32, it means that for one 

complete epoch, 30 batches each of 32 images will be pro-

cessed by the network. Processing in batches enables the 

resources available to process the batch samples one after the 

other than processing the 960 images at once, which will 

require more resources and could slow down the process. If 

there are enough resources, the batch size can be larger as a 

larger batch size completes each epoch within a shorter time 

than a smaller batch size. The trade-off, however, is that even 

if our machine can handle very large batches, the quality of 

the model may degrade as we set our batch larger, thus 

causing overfitting [43]. 

 
Figure 6. Shows batching processing techniques [44]. 

(v). Convolutional Layer 

Figure 7 below shows the processes involved in the con-

volutional layer. The layer has the input image represented in 

pixels, the filter (a square matrix also called a kernel), and the 

activation map, which indicates the most relevant regions in 

the input image for predictions, illustrating the learned fea-

tures. 

 
Figure 7. Shows the convolutional layer processes [45]. 

A convolutional layer is an important layer in a Convolu-

tional Neural Network (CNN). it is made up of filters (kernels) 

whose values are learned during training [44]. These filters 

are usually smaller than the input image as shown in figure 7. 

Each filter slides over the image and performs a dot product 

between its values and the corresponding input values to 

create an activation map. 

How does it Work? 

In simple terms, think of a filter as a small window that 

scans the image and highlights patterns it recognizes. For 

example, in Figure 7, the filter is multiplied (dot product) with 

the blue matrix in the input image, and the result of the dot 

product is inputted in the activation map. For instance, 

7*1 + 2*0 + 3*-1 + 4*1 + 5*0 + 3*-1 + 3*1 + 3*1 + 2*-1 = 7 + 

0 - 3 + 4 + 0 - 3 + 3 + 3 - 2 = 6 

This process is repeated as the filter slides over the entire 

image, producing a new matrix called the feature map (or 

activation map). 

The final output of a convolutional layer is a stack of these 

activation maps, one for each filter. Each map can be thought 

of as the output of a neuron that is connected to a small region 

of the input image, the size of which matches the filter size. 

All neurons in an activation map share the same parameters, 

meaning they detect the same pattern but at different positions 

in the image. 

Hyperparameters in Convolutional Network 

Hyperparameters are settings configured in CNN that guide 

the way the convolutional process is done. In the convolu-

tional layer, three hyperparameters (padding, kernel size, and 

stride) are of utmost significance. 

Padding 

During convolutional training, the kernel (filter matrix) can 

extend beyond the activation map, thus padding converses the 

data at the border of the activation map. This is necessary to 

preserve the spatial size (shape of the activation map) [45]. 

Many padding techniques are available for use, but the most 

commonly used is zero padding because of its performance, 

simplicity, and efficiency. Padding techniques involve adding 

zeros symmetrically around the edges of an input [45]. 

Kernel size 

The kernel size refers to the dimension of the filter matrix. 

The job of the kernel size is to extract information from the 

image [39]. The kernel is multiplied with the image matrix to 

form the activation map. The type of kernel size used In a 

CNN network has a significant impact on the performance of 

the classification task. A small kernel size can extract more 

detailed information from an image than a large one. The 3x3 

kernel in Figure 7 produces a 3x3 activation map, however, a 

2x2 kernel size will produce a 4x4 activation map [32]. A 

larger kernel size leads to a faster reduction in the layer di-

mension, leading to worse performance. 

Stride 

The stride determines how many pixels to the right should 

the kernel shift over the image matrix to perform the second 

dot product operation. Tiny VGG, an image classification 

network, uses a stride of 1 for its convolutional layers, 

meaning that the kernel moves 1 pixel to the right to perform 

the next dot multiplication operation [43, 45]. After the com-

pletion to the right, the kernel moves 1 pixel downward to 

cover other pixels in the image. The impact of the stride is 

similar to that of the kernel size. A large stride (say 3 pixels) 

reduces the features much more quickly, thus reducing per-

formance [45]. Conversely, a small stride (like 1 pixel) allows 
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the kernel to extract more features from the image, thus 

leading to better performance. 

The convolutional layer of EfficientNetB0 

Figure 8 shows the convolutional layer of the Efficient-

NetB0. The convolutional layer is the main process of a CNN 

network. From Figure 8, the first convolutional layer is a 

conv3x3 matrix (also called the conv2D in figure 3). The 3x3 

represents the kernel size, while the ‘2D’ represents a 

2-dimensional matrix. 

 
Figure 8. Shows the convolutional layer of the EfficientNetB0 model [7, 47]. 

The convolutional layers in blocks 1 to 7 are similar. In 

block 1, MBConv1, 3x3 refer to a specific type of convolu-

tional block called Mobile Inverted Residual Bottleneck 

(MBConv) with a matrix (filter) of 3x3 and an expansion 

factor of 1. MBConv was introduced by MobileNetV2 archi-

tecture and it is designed for computation and memory effi-

ciency [46]. It expands the number of channels (RGB colors) 

using pointwise convolution, applies the depthwise separable 

convolution, and then represents the results in a lower di-

mensional space [45]. The expansion factor indicates how 

much the channel is expanded before depth-wise convolution 

[47]. 

4. Metrics Used in the Experiment 

Before discussing the results, we need to explain the met-

rics (accuracy, loss, Top_k_categorical_accuracy, precision, 

and recall) used in these experiments. The diagram below 

considers a confusion matrix. 

Consider this confusion matrix above. The dark blue 

boxes represent true positive and false positive respectively. 

True positive means that the model predicted the exact as the 

actual. The term ‘true’ means that the model correctly pre-

dicted the sample and ‘false’ means otherwise. Positive and 

‘negatives’ refer to the samples in the data. In a case where 

we have two samples (binary classification), the first sample 

could be classified as positive and the second sample as 

negative. 

 
Figure 9. Shows a confusion matrix. 

Accuracy 

Accuracy is a metric that describes how a model performs 

across all dataset. It is useful when all classes of a dataset are 

of equal significance and it measures the overall correctness 

of a model. It is calculated by the ratio of number of correct 

predictions to the total number of predictions. 

Accuracy = 
𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+ 𝑇𝑟𝑢𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
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Precision 

Precision, also known as the positive predictive value, is 

the ratio of true positive predictions to the total predicted 

positives. It measures the accuracy of positive predictions. It 

focuses on the correctness of positive predictions. 

Precision = 
𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 

𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+ 𝐹𝑎𝑙𝑠𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

Recall 

Recall, also known as sensitivity or true positive rate, is the 

ratio of true positive predictions to the total actual positives. It 

measures the ability of a model to identify all relevant instances. 

Recall = 
𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 

𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+ 𝐹𝑎𝑙𝑠𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

Top-k Categorical Accuracy 

Top-k categorical accuracy measures the proportion of 

predictions where the true label is among the top k predicted 

labels. This is particularly useful for multiclass classification 

where you want to know if the correct label is within the top k 

predictions. 

Top-k Categorical Accuracy = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝑡𝑜𝑝 𝑘

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

5. Research Methodology 

The research methodology involves data collection, un-

derstanding the data, image preprocessing, building the base 

model using 10% of the data, fine-tuning experiments, eval-

uating the model with validation and test data, and lastly 

choosing the best model.  

5.1. Data Collection 

The Food-101 dataset is a large collection of food images 

designed for the task of food classification. The Food-101 

datasets were collected to help advance research in computer 

vision and machine learning, particularly in the domain of 

image recognition. Introduced by the ETH Zurich Computer 

Vision Lab in 2014, the Food-101 dataset has become the 

extremely popular benchmark for evaluating algorithms due 

to its diversity and complexity. 

Composition of Food-101 Dataset 

The Food-101 dataset contains 101,000 images divided into 

101 categories, with each category representing a different type 

of food. Each category includes 1,000 images, offering substan-

tial data for training and evaluation. The dataset features a variety 

of dishes, from common fast-food items like burgers and hot 

dogs to more complex dishes like paella and sushi. 

1) Images: 101,000 images (approximately) of food dishes, 

divided into 101 classes (e.g., pizza, sushi, tacos, etc.). 

2) Resolution: Images are resized to 512x384 pixels. 

3) Format: JPEG format. 

4) Classes: 101 classes, each representing a specific type of 

food dish. 

5) Each class of image has 1000 images 

 
Figure 10. Shows part of the images of food101 dataset [15]. 

The Food101 dataset can be downloaded from Google 

Storage or TensorFlow Datasets. During the download pro-

cess, the data is shuffled to reduce overfitting, preventing the 

model from merely memorizing the training data and thereby 

enhancing its generalization ability. Shuffling also improves 

model robustness, enabling it to handle new and unseen data 

more effectively, which helps prevent bias, enhance conver-

gence, and provide a better representation of the dataset. This 

ensures that the CNN model is trained on a diverse and rep-

resentative set of images, ultimately leading to improved 

performance and generalization. 

5.2. Understanding the Data 

After obtaining the data, it is compulsory to explore the 

data before modelling. In the food101 datasets, we do the 

following to get acquainted with the dataset. 

1) We explore the class labels. The data has 101 food 

classes. The first 10 food classes are 

['apple_pie', 'baby_back_ribs', 'baklava', 'beef_carpaccio', 

'beef_tartare', 'beet_salad', 'beignets', 'bibimbap', 

'bread_pudding', 'breakfast_burrito'] 
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2) We can randomly select images of food in the dataset to 

better understand the food classes. 

3) We can check the tensor for each image. A tensor for 

instance is represented as ([255, 192, 203]) for each 

pixel. Each image in the food101 dataset has a resolution 

of 224x224, totaling 50,176 pixels. Therefore, an image 

in the food101 dataset has 50,176 tensors and each ten-

sor has three values indicating the intensities of RGB 

colours. The intensity of each colour of red, green or 

blue has values from 0 – 255.  

4) We can check the shape and data type of the images. The 

food101 input shape is [224x224x3] and the output shape is 

a vector. The datatype is represented in unit 8. We have to 

convert the datatype in int32 before processing. 

5) We can check the labels of the dataset. Are they one-hot 

encoded or label encoded? 

6) We can check if the labels match-up with the class names 

5.3. Image Preprocessing 

We cannot use our raw data food101 this way. We need to 

preprocess the data. Preprocessing in image classification 

involves preparing raw image data for the classification al-

gorithm [36]. This includes steps like resizing images (see 

3.2.2.2) to a uniform size, normalizing pixel values (see 

3.2.2.3), batching (see 3.2.2.4), augmenting data through 

transformations (e.g., rotations, flips), and removing noise. 

Preprocessing enhances the quality of the input data, ensures 

consistency, and often improves the performance and accu-

racy of the classification model [39]. 

For our food101 data, we convert the uint8 data type to float 

32 datatypes. Besides, the food101 dataset comprises of dif-

ferent sized tensors (images), so the data need to be converted 

into 255 by 255, first for consistency and besides, the Effi-

cientNetB0 can only process images in 255 by 255. Lastly, the 

images need to be scaled. Scaling also call normalization is the 

process of converting the pixel values into numbers between 0s 

and 1s. This is done by dividing the pixels by 255. Efficient-

NetB1 for instance, takes images in size 260 by 260. In the case, 

the image will be divided by 260 for scaling. 

We need to process our images in batches. Batch pro-

cessing is the technique of dividing a large dataset into smaller, 

manageable batches for processing. This method enhances 

memory efficiency, accelerates computation, and optimizes 

resource utilization [48], particularly in machine learning and 

data processing tasks, enabling continuous and effective use 

of hardware resources like CPUs and GPUs. In our experi-

ment, we batch the 101,000 images into batches of 32 images 

and label pairs, thus enabling the images to fit into the GPU 

memory. 

5.4. Building the Base Model 

To build the base model, we typical use TensorFlow, im-

porting the pre-trained EfficientNetB0 model from its re-

spective library. The pretrained model already trained on a 

large dataset like ImageNet, is fine-tuned to enable the model 

to generalize better 

5.5. Fine-tuning Experiments 

Fine-tuning is the process of unfreezing the EfficientNetB0 

layers to optimize the model’s performance. Fine-tuning al-

lows the weight of the base model to adapt to the dataset. 

enabling the model to leverage learned features while adapt-

ing to new data. The result is a powerful and efficient base 

model suitable for various image classification applications. 

We did the first experiment with 10% of the data and fine-tune 

the top 5 layers for experiment 2. For experiment 3, we train 

the EfficientNetB0 model on the entire dataset, after which we 

fine-tuned the top 50 layers and top 100 layers for experiment 

4 and 5 respectively.  

5.6. Evaluation of the Models 

We evaluate the performance of the experiments using the 

accuracy score, loss function, recall, precision, and Top-k 

Categorical Accuracy. See 4.0 

6. Analysis of the Result 

6.1. Experimental Results 

To demonstrate the effectiveness of transfer learning with 

EfficientNetB0, the research was conducted using various 

quantities of data. We began by experimenting with 10% of 

the training data and 101 food classes, equating to 7575 im-

ages with each class containing 75 images. Next, we per-

formed three experiments on the whole dataset (101,000 im-

ages), fine-tuning the layers to obtain the optimal accuracy. 

Experiment 1: Feature extraction with 10% training dataset 

In the feature extraction model, all layers are fixed except 

for the input layer [49]. After five epochs, the model (10% of 

the training data) achieved an accuracy of 0.6440 and a loss of 

1.4493. The training process took 4 minutes and 32 seconds. 

The validation accuracy and loss were 0.6572 and 1.7824 

respectively. When evaluated on the test dataset, the model 

achieved an accuracy of 0.5797. The figure 11 illustrates the 

training and validation metrics over five epochs. 
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Figure 11. Shows the accuracy and the loss function of experiment 1. 

Experiment 1 shows moderate performance with relatively 

low accuracy and high loss. Precision and recall are balanced, 

but there's room for improvement. Figure 11 shows that the 

validation dataset is overfitting. If the number of epochs is 

increased, the accuracy will increase. The validation metrics 

are consistent with the training metrics, but precision is ab-

normally high, likely due to calculation issues. The recall is 

lower, indicating missed positive instances. 

Experiment 2: Fine-tuning model 1 

To improve the results in experiment 1, we fine-tune the 

EfficientNetB0 architecture. Fine-tuning a model involves 

taking a pre-trained EfficientNetB0 model and adjusting its 

weights to better suit a specific dataset [37]. Initially, the 

model, pre-trained on a large dataset like ImageNet, has 

learned general features. Fine-tuning adapts these features to 

the new dataset by adjusting the weights of the pre-trained 

model to fit to the specific task [50]. This process involves 

unfreezing the layers that capture more task-specific features 

to enhance performance and accuracy for the target task. 

To fine-tune, we unfreeze the last 10 base layers (… 233 

block7a_project_conv True, 234 block7a_project_bn True, 

235 top_conv True, 236 top_bn True, 237 of top_activation 

True). After five epochs, the fine-tuned architecture achieved 

an accuracy of 0.8733 and a loss of 0.5395. The validation 

data achieved an accuracy score of 0.6618 and a loss of 

1.2537. On evaluating with test date, we obtained a loss: of 

1.2831 and - accuracy: of 0.6647. The figure below shows the 

accuracy and loss for the training and validation dataset. Fi-

ne-tuning improves accuracy and reduces loss compared to 

Experiment 1. Precision and recall also improve, indicating 

better model performance. Validation accuracy is consistent 

with training accuracy, showing good performance. 

Epoch 5/5 

237/237 [==============================] - 

100s 420ms/step - loss: 0.5395 - accuracy: 0.8733 - 

top_k_categorical_accuracy: 0.9809 - precision_3: 0.9637 - 

recall_3: 0.7529 - val_loss: 1.2537 - val_accuracy: 0.6618 - 

val_top_k_categorical_accuracy: 0.8893 - val_precision_3: 

0.8085 - val_recall_3: 0.5707 

Test data 

loss: 1.2831 - accuracy: 0.6647 - 

top_k_categorical_accuracy: 0.8886 - precision_1: 0.7865 - 

recall_1: 0.5890. The figure 12 below shows the accuracy and 

loss of experiment 2 

  
Figure 12. Shows the accuracy and the loss function of experiment 2. 
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Experiment 3: training the who dataset 

In this experiment, we train the EfficientNetB0 feature ex-

traction model with the entire training dataset. After training 

for 5 epochs, we obtain the result below: 

Epoch 5/5 

2368/2368 

[==============================]271s 114ms/step 

- loss: 1.0433 - accuracy: 0.7246 - 

top_k_categorical_accuracy: 0.9136 - precision_1: 0.8851 - 

recall_1: 0.6028 - val_loss: 0.9615 - val_accuracy: 0.7379 - 

val_top_k_categorical_accuracy: 0.9245 - val_precision_1: 

0.8764 - val_recall_1: 0.6361 

For the test data, we obtain the result below 

loss: 0.9615 - accuracy: 0.7379 - 

top_k_categorical_accuracy: 0.9245 - precision_1: 0.8764 - 

recall_1: 0.6361 

Training the whole dataset increases accuracy and top-k 

accuracy, but recall is lower, suggesting the model may miss 

some positive instances. Slightly higher validation accuracy 

compared to training, with good precision and improved re-

call over Experiment 1, indicating better generalization. 

The two graphs below show the accuracy and loss result of 

experiment 3 

  
Figure 13. Shows the accuracy and loss function of experiment 3. 

Experiment 4: Fine-tunning the model in experiment 3 

In this experiment, we unfreeze the last 50 layers of our 

base model and after training the model for 5 epochs, we 

obtained the results below. 

2368/2368 [==============================] - 

229s 96ms/step - loss: 0.3746 - accuracy: 0.8925 - 

top_k_categorical_accuracy: 0.9855 - precision_2: 0.9402 - 

recall_2: 0.8460 - val_loss: 0.7817 - val_accuracy: 0.7966 - 

val_top_k_categorical_accuracy: 0.9482 - val_precision_2: 

0.8554 -  val_recall_2: 0.7655 

For the evaluation of the test data, we obtain 

loss: 0.7817 - accuracy: 0.7966 - 

top_k_categorical_accuracy: 0.9482 - precision_2: 0.8554 - 

recall_2: 0.7655 

The fine-tune EfficientNetB0 architecture takes 35 minutes 

to train the whole food101 dataset. The diagram below gives 

the result of this experiment. All hyperparameters are kept 

constant. The model gave an accuracy score of 0.8467 and 

loss function of 0.4567 after five epochs. However, the model 

has an accuracy and loss of 0.7856 and 0.9035 on the valida-

tion data. Similar result was obtained when the model was 

evaluated on the test data. Unfreezing 50 layers in experiment 

3 significantly improves accuracy, precision, recall, and re-

duces loss, indicating a well-balanced and effective model. 

Validation results are slightly lower than training, but still 

strong, showing effective fine-tuning and good balance be-

tween precision and recall. 

 

 
Figure 14. Shows the accuracy and loss function of experiment 4. 
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Experiment 5  

Since the results in experiment 4 are not excellent, we un-

freeze the first 100 layers of the EfficientNetB0 and train the 

model to see if we will obtain better results. The results are 

shown below. 

Epoch 5/5 

2368/2368 [==============================] - 

278s 117ms/step - loss: 0.1003 - accuracy: 0.9754 - 

top_k_categorical_accuracy: 0.9989 - precision_4: 0.9821 - 

recall_4: 0.9702 - val_loss: 0.8631 - val_accuracy: 0.8287 - 

val_top_k_categorical_accuracy: 0.9603 - val_precision_4: 

0.8574 - val_recall_4: 0.8120 

It took 24 minutes 08 seconds to train this model for 5 

epochs. Experiment 5 shows the best performance with very 

high accuracy, low loss, and high precision and recall, indi-

cating a highly effective model with excellent generalization. 

High validation accuracy and strong precision and recall, 

although slightly lower than training, indicates good model 

performance and generalization. 

  
Figure 15. Shows the accuracy and loss function of experiment 4. 

6.2. Summary of the Experiments 

The table below reveal an overview of the results on the training data. 

Table 3. Shows the results of the training data of 5 experiments. 

 Epochs Accuracy 
Loss  

function 

Top_k_categori

cal_accuracy 
Precision Recall 

Experiment 1 (Feature extraction with 10% of data) 5 0.6440 1.4493 0.7654 0.7322 0.6780 

Experiment 2 (Fine-tune with 10% of data) 5 0.8733 0.5395 0.9809 0.9637 0.7529 

Experiment 3 (Feature extraction full dataset) 5 0.7246 1.0433 0.9136 0.8851 0.6028 

Experiment 4 (Unfreezing the last 50 layers) 5 0.8926 0.3746 0.9855 0.9402 0.8460 

Experiment 5 (Unfreezing the last 100 layers) 5 0.9754 0.1003 0.9989 0.9821 0.9702 

The table below reveal an overview of the results on the validation data. 

Table 4. Shows the results of the validation data of 5 experiments. 

 Accuracy Loss function 
Top_k_categorical_a

ccuracy 
Precision Recall 

Experiment 1 (Feature extraction with 10% of data) 0.6440 1.4493 0.6572 1.7824 0.5797 
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 Accuracy Loss function 
Top_k_categorical_a

ccuracy 
Precision Recall 

Experiment 2 (Fine-tune with 10% of data) 0.6618 1.2537 0.8893 0.8085 0.5707 

Experiment 3 (Feature extraction full dataset) 0.7379 0.9651 0.9245 0.8764 0.6361 

Experiment 4 (Unfreezing the last 50 layers) 0.7966 0.7817 0.9482 0.8554 0.7655 

Experiment 5 (Unfreezing the last 100 layers) 0.8287 0.8631 0.9603 0.8574 0.8120 

The table below reveal an overview of the results on the test data. 

Table 5. shows the results of the test data of 5 experiments. 

 Accuracy Loss function 
Top_k_categorical

_accuracy 
Precision Recall 

Experiment 1 (Feature extraction with 10% of data) 0.6440 1.4493 0.6572 1.7824 0.5797 

Experiment 2 (Fine-tune with 10% of data) 0.6647 1.2831 0.8886 0.7865 0.5890 

Experiment 3 (Feature extraction full dataset) 0.7379 0.9615 0.9245 0.8764 0.6361 

Experiment 4 (Unfreezing the last 50 layers) 0.7966 0.7817 0.9482 0.8554 0.7655 

Experiment 5 (Unfreezing the last 100 layers) 0.8335 0.8631 0.9603 0.8574 0.8120 

 

Experiment 5 (Unfreezing the last 100 layers) yielded the 

best results across all metrics. It achieves an accuracy score of 

97.54% on the training data and 83.35% on the test data. Other 

metrics such as Top_k_categorical accuracy, precision, and 

recall achieved 99.89%, 98.21%, and 97.02% respectively. 

6.3. Significance of the Research 

This research is significant because it shows the power of 

transfer learning in achieving very high accuracy in convolu-

tional network. Besides, it reveals the potency of Efficient-

NetB0 architecture, showing that it is possible to achieve an 

100% accuracy score with EfficientNetB0 by fine-tuning. 

EfficientNetB0 balances accuracy and computational effi-

ciency, making it suitable for real-world applications where 

resources are limited. This research can contribute to ad-

vancements in dietary monitoring, food logging, and 

health-related technologies, enabling more accessible and 

practical solutions for consumers. 

6.4. Limitation of the Research 

The optimal number of layers to fine-tune for achieving 

perfect accuracy with EfficientNetB0 remains uncertain. It 

often involves trial and error to determine the best configura-

tion for optimal results, presenting an opportunity for future 

research. Additionally, training larger architectures like Effi-

cientNetB7, which can yield excellent results in food classi-

fication, demands significant computational resources that 

were not available during this study. 

7. Conclusion 

The Food101 dataset is a very popular dataset for demon-

strating the potency of transfer learning. Much research has 

been done on the classification of food101, but those that 

achieve high accuracy results utilize heavyweight architecture, 

which requires high computational resources. The research 

showed that lightweight convolutional architecture, such as 

fine-tuned EfficientNetB0 can achieve much better results than 

most heavyweight architectures. Besides, the research also 

balanced model accuracy and computational efficiency, ad-

dressing the possibility of achieving high-accuracy results in 

resource-constrained environments in less than 6 epochs. 

The food101 dataset used for this research contains 101 

food classes, and each class has 1000 images. Five experi-

ments were performed to determine the optimal solution. The 

first two experiments used 10% of the training data, which 

achieved an accuracy score of 77.68% in 5 epochs after fi-

ne-tuning the last 5 layers. The last three experiments used the 

entire data. The optimal solution is achieved by fine-tuning 

the last 100 layers of the EfficientNetB0. The model achieved 

an accuracy of 97.54% in just 5 epochs. 

The research demonstrated the potency of EfficientNetB0 
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on image classification. It also reveals that it is possible to 

achieve an accuracy of 100% with lightweight architecture. 

The major limitation is to determine the optimal number of 

layers to fine-tune to achieve 100% accuracy with less than 5 

epochs, presenting an opportunity for future research. 

Abbreviations 

CNN Convolutional Neural Network 

ANN Artificial Neural Network 

TL Transfer Learning 

EfficientNetB0 Efficient Network Baseline 0 

FLOPs Floating Point Operations 
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